
Department of Engineering

Author Name: Zach Lambert

Supervisor: Professor Joan Lasenby

Date: 30/05/2021

I hereby declare that, except where specifically indicated, the work submitted herin is my own

original work.

Signed _______________________________ date _____________________________

Conformal Geometric

Algebra for Robot

Kinematics

2hL 30 05 21

Conformal Geometric Algebra for Robot Kinematics
Zach Lambert Pembroke College

Technical Abstract
Robot kinematics is the problem of relating the joint positions of a robot to the
position and orientation of an end effector, collectively called its pose. This is
necessary for controlling the end effector of a robot as well as knowing the position
of all its links, for visualisation and collision avoidance.

Conventionally, this is done with standard algebraic techniques, linear algebra and
quaternions. Conformal geometric algebra provides an alternative method. In gen-
eral, geometric algebra (GA) is a type of algebra that it well suited to geometric
operations. Conformal geometric algebra (CGA) is a specific type of geometric
algebra that can be used to perform intersection of geometric primitives and rep-
resent rigid body transformations, among other things.

This makes CGA well suited to many robotics applications, such as computer
vision and kinematics. This project set out to investigate the practical use of CGA
for kinematics by controlling a delta and serial robot. Kinematics functions were
implemented using conventional methods and CGA for comparison, then used by
the robots to perform a manipulation tasks.

An introduction to geometric algebra and conformal geometric algebra is given first,
explaining key concepts and results required for kinematics. In particular, the use
of conformal geometric algebra to represent and intersect geometric primitives is
presented, to be used for the delta robot kinematics.

Following this, solutions to the kinematics of the delta robot and serial robot are
given, for forward kinematics and inverse kinematics. Solutions are first given
using conventional methods, then using CGA. Prior to solving the serial robot
kinematics, an overview of representing rigid body transformations is given, for
both methods.

To organise the software, the robotics operating system (ROS) will be used to
control the robots. ROS facilitates distributed robotics software, where different
components are run as separate processes, called nodes. ROS acts as a middle-
ware between these nodes, allowing communication between nodes via a pub/sub
protocol or client/server protocol.

A number of pieces are code are required for the final result. The first is a C++
CGA library. To allow for fine tuning of this library, a custom CGA library was
developed. The bulk of the library provides data structures and operations for
performing CGA operations, generated using a custom code generator, written in
Python. The remainder of the library provides functions for geometry and rigid
body transformations.

Following the CGA library, a standalone robotics library was developed, inde-
pendent from ROS. This provides a standard interface to a base robot class for
performing various kinematics operations. Child classes were implemented for the

2

delta and serial robot. By using a compile-time flag, the compilation could select
between different source files, to select a conventional or CGA implementation.

Finally, a ROS package was developed. This contained descriptions of the kine-
matic structures of the delta and serial robot, specified by URDF files. For each
robot type, a state publisher and controller node were written. The state publisher
node would perform the forward kinematics of the robot, allowing the end effector
pose to be calculated and the robot visualised. The controller node would listen to
commands to follow a particular velocity or execute a trajectory to a given goal.

The end goal was to allow the robots to be manually controlled, saving a series
of waypoints to follow, then having it automatically follow these waypoints. A
commander node was written to process user input, store saved waypoints and
send appropriate commands to the controller.

The control code was first applied to simulated robots using the Gazebo robotics
simulator, allowing for faster development. Following this, it was able to be applied
to real robots, making use of a standard control architecture provided by ROS such
that the robot is always controlled the same way, simulated or real.

To evaluate the viability of CGA for robot kinematics, a comparison of execution
time with conventional methods was given, then a qualitative overview of its ability
to perform different tasks.

Execution times for kinematic functions using CGA were consistently slower, but
not significantly so. For functions with closed-form solutions, execution times were
still of the order of micro-seconds, with little variation, making them sufficiently
fast.

For the inverse kinematics of the serial robot, the only function using numerical
methods, execution were far longer, dependent on convergence time, although the
CGA function still had larger execution times.

For both the delta and serial robot, using CGA made programming easier, given
that the programmer understands CGA. The geometrical nature of the delta robot
kinematics was much easier to solve using CGA, as opposed to the tedious algebraic
solution using standard algebra. For the serial robot, the kinematics were quite
similar, except that CGA could be used for all calculations, providing consistency,
whereas conventional methods often had to work with a number of algebras, such
as homogeneous matrices and quaternions, often requiring conversions.

CGA was able to be used when manually controlling the two robots, or having
them perform tasks. Both robots were able to pick and place objects, as well as
stack objects on top of one another. Any limitations were due to simulation or
hardware limitations.

This shows that CGA is a viable method for performing kinematics in practical
control applications. Further work could extend this to the kinematics of other
robot topologies; investigate the use of CGA for more advanced control methods,
such as constrained control; or integrate computer vision into control, such as with
visual servoing, which can also be solved using CGA.

3

1 Introduction

Robot kinematics is the problem of relating the
joint positions of a robot structure to the config-
uration of the robot, particular the position and
orientation of the end effector: the gripper or tool
which the robot is designed to move.

There are four problems that need to be solved:

• Forward kinematics:
For a particular set of joint positions, what
is the end effector pose (position and orien-
tation)?

• Inverse kinematics:
For a desired end effector pose, what are the
required joint positions?

• Instantaneous forward kinematics:
For a particular set of joint positions and ve-
locities, what is the end effector twist (linear
and angular velocity)?

• Instantaneous inverse kinematics:
For a set of joint positions and desired end
effector twist, what are the required joint
velocities?

A robot consists of a number of rigid bodies, called
links. These links are connected by joints, which
constrain their relative motion. The configuration
of links and joints is called the kinematic struc-
ture, or topology of the robot.

The topology of a robot will determine the nature
of these solutions. The broadest classification is
between serial and parallel robots.

1.1 Serial robots

With a serial robot, each link only has two joints,
connecting it to its two neighbours, except for the
first and last links which only have a single joint.
The result is that the kinematic structure forms a
serial chain, as shown in Figure 1.

With a serial robot, the forward kinematics can be
calculated easily. However, the inverse kinematics

doesn’t have a closed-form solution in general, re-
quiring numerical methods.

The exception to this is industrial robots: serial
robots with a specific structure such that the in-
verse kinematics has a closed-form solution.

Figure 1: The kinematic structure of a serial
robot[1].

1.2 Parallel robots

A parallel robot is defined by the presence of loops
in the kinematic structure. This means that mul-
tiple serial chains connect to a common link. A
good example is the delta robot, shown in Fig-
ure 2. It has three serial chains, consisting of a
rocker arm and connecting rod, which meet at a
base plate.

A parallel robot imposes the constraint that each
serial chain meet at the end effector, making
forward kinematics non-trivial. Often numerical
methods are required.

4

Figure 2: Structure of a delta robot[2], an ex-
ample of a parallel robot. It has three degrees of
freedom, such that the position of the end effec-
tor is fully defined by the three rocker arm joint
positions.

On the other hand, inverse kinematics only needs
to be solved for each serial chain individually.
These serial chains always have simple structures
themselves, with low degrees of freedom; oth-
erwise the forward kinematics would be under-
constrained. This makes the inverse kinematics
simple.

The delta robot is an example of a parallel robot
where the forward and inverse kinematics both
have closed form solutions.

Due to the symmetry and use of ball joints on the
connecting rods, the end effector is constrained to
lie flat. The three controlled joints, connecting
the frame to the rocker arms fully define the end
effector position.

1.3 Motivation

Conventionally, robot kinematics is solved using
a combination of linear algebra and quaternions,
used for kinematics problems both with closed
form solutions and numerical solutions.

Geometric algebra (GA) is a type of algebra that

can be applied to geometrical problems more nat-
urally than other methods. One specific type of
geometric algebra called conformal geometric al-
gebra (CGA) extends this functionality to support
a wider range of operations, such as representing
geometrical primitives and performing rigid body
transformations.

This makes CGA well suited to robotics and has
seen success for a range of applications, including
computer vision[3] and kinematics.

1.4 Project objectives

This project aims to investigate the use of CGA
for kinematics in a practical robotics application.
Control will be implemented for both the delta
robot and a general serial robot, using the robotics
operating system (ROS)[4] to organise the soft-
ware.

This follows from work by Wei L in the previous
year[5] where the kinematics of the delta robot
was solved using CGA then applied to the control
a delta robot in the Unity game engine[6].

The kinematics of the serial robot will also be
solved using CGA, then solutions to both kine-
matics will be implemented in a C++ library to
use in ROS.

To understand how CGA compares to conven-
tional methods, the kinematics library will provide
implementations using conventional and CGA
methods. The only difference will be how kine-
matics are solved, allowing benchmarks of execu-
tion times to be measured and provide a fair com-
parison.

Finally, the end goal is to apply this to a control
task. The ROS package developed will allow for
the manual control of the two robots and planning
out of a task by setting waypoints. The robot will
then be able to automatically move between these
waypoints to perform the task.

5

2 Geometric algebra (GA)

2.1 Overview of GA

Geometric algebra originates from work by Grass-
mann and Clifford and experienced increased in-
terest in recent history after Hestenes presented
Clifford algebra as a new “unified language for
mathematics and physics.”[7]

Geometric algebra is essentially the same as Clif-
ford algebra, but is used for geometric applica-
tions. For simplicity, the name “Geometric alge-
bra” will be used.

Note that throughout this report, vectors in ge-
ometric algebra are not written using bold font.
This is because in geometric algebra, all objects,
including scalars and vectors, belong to the same
algebra. Bold font will be used when looking at
vectors in standard vector algebra.

2.1.1 Vectors and planes

A vector x ∈ Rn has the following properties:

• Attitude: The subspace spanned by the vec-
tor. All vectors x = λa have the same atti-
tude.

• Handedness: The sign of the vector. Vec-
tors x = a and x′ = −a have the opposite
handedness.

• Size: The weight of the vector. Vector
x = 2a has double the size of vector x′ = a.

A plane is defined as the subspace spanned by
two linearly independent basis vectors. However,
we can also consider an oriented plane which like
a vector, has an attitude, handedness and size.

These oriented planes are called bivectors, and are
formed by the outer product of two vectors:

B = a ∧ b

Consider the following three bivectors:

B1 = a ∧ b
B2 = 2a ∧ b
B3 = a ∧ (−b)

All these bivectors have the same attitude: a plane
spanned by a and b. However, bivector B2 has
double the size of B1 and B3 and bivector B3 has
the opposite handedness of bivectors B1 and B2.

2.1.2 The outer product, blades and mul-
tivectors

The outer product is a new operation, which as
seen earlier combines vectors. It has the following
properties:

• Associative: a∧(b∧c) = (a∧b)∧c = a∧b∧c

• Distributive: a∧(b + c) = a∧b + a∧c

• Anti-commutative: a∧b = -b∧a

• a∧a = 0

The final property makes sense. A plane can’t be
defined by two linearly dependent vectors. Follow-
ing this, the outer product is shown to only care
about the orthogonal component. For b′ orthogo-
nal to a:

a ∧ b = a ∧ (b′ + λa) = a ∧ b′

Blades and multivectors

The outer product of r basis vectors is called an
r-blade, or a blade with the grade of r.

A multivector is a linear combination of blades of
any grade. When all blades have the same grade
r, it is called a homogeneous multivector of grade
r.

Homogeneous multivectors of grade 2 are also re-
ferred to as bivectors, as seen earlier. Similarly,
the names trivector and quadvector are also used.

6

Grade selection

For a general multivector, the grade r part can be
extracted with:

Ar = 〈A〉r

For the grade 0 (scalar) part, the subscript is
dropped:

〈A〉0 = 〈A〉

Interpreting blades and multivectors

Mixed grade multivectors don’t have a geometric
interpretation, although are used for some opera-
tions as seen later.

Bivectors represent oriented planes, trivectors ori-
ented volumes, and higher grade homogeneous
multivectors, oriented hyper-volumes.

Blades act as basis bivectors, and so on. For ex-
ample, consider the following bivectors:

A = b ∧ c
B = c ∧ a
C = a ∧ b
X = (2a+ b) ∧ (c− a)

= 2a ∧ c+ b ∧ c− b ∧ a
= −2c ∧ a+ b ∧ c+ a ∧ b
= −2B + A+ C

A, B and C are blades, since they can be expressed
as the outer product of vectors. All bivectors can
be expressed in terms of these blades, such as X.

2.1.3 The inner product

The inner product between vectors a · b is equiv-
alent to the standard scalar product between vec-
tors.

The inner product does exist between any two
multivectors. However, defining this requires the
geometric product.

2.1.4 The geometric product

Both the inner and outer product can be expressed
in terms of the geometric product. This operation
acts as the foundation of geometric algebra.

The geometric product between a and b is denoted
ab and has the properties:

• Associative: a(bc) = (ab)c = abc

• Distributive: a(b+ c) = ab+ ac

• Neither commutative nor anticommutative

• aa = a2 ∈ R

The geometric product between vectors relates to
the inner and outer products with:

ab =
1

2
(ab+ ba) +

1

2
(ab− ba)

= a · b+ a ∧ b

where the inner and outer products are defined in
terms of the geometric product as:

a · b = 1

2
(ab+ ba) (1)

a ∧ b = 1

2
(ab− ba) (2)

This separation derives from the fact that ab+ba ∈
Rn, so captures the scalar part of ab while the
other component of ab captures the non-scalar
part:

a · b = 1

2
(ab+ ba)

=
1

2
((a+ b)2 − a2 − b2) ∈ Rn

Useful results

For orthogonal vectors, the outer and geometric
product are equivalent:

a · b = 0 =⇒ ab = a ∧ b

The geometric product can be reversed with either
of the following, using eq. (1) and eq. (2):

ab = 2a · b− ba ab = 2a ∧ b+ ba (3)

7

2.1.5 Canonical basis of geometric algebra

It is useful to express all multivectors using a set of
basis blades. For the basis vectors a1, a2, . . . , an,
this gives basis blades a1∧a2, a1∧a3, . . . , a1∧a2∧
a3,

This doesn’t place any restriction on the values
ai · aj between basis vectors. Instead, it is more
useful to consider a set of orthonormal basis vec-
tors e1, . . . en where:

ei · ej =

{
±1 i = j

0 i 6= j

The result is that the geometric product between
basis vectors is:

eiej =

{
e2i = ±1 i = j

ei ∧ ej = −ejei i 6= j

The geometric product between different products
now anticommutes, which is more useful than the
geometric product between two general vectors,
which neither commutes nor anticommutes.

Signature

e2i is equal to +1 or −1. A canonical basis has
signature G(p, q), where p+ q = n and:

e2i =

{
+1 1 ≤ i ≤ p

−1 p+ 1 ≤ i ≤ p+ q

In other words, p basis vectors square to +1 and
q basis vectors square to −1.

Expressing multivectors using basis vectors

Any multivector can be expressed as a linear com-
bination of blades, formed by the outer product of
vectors.

For a canonical basis, any multivector can be
expressed by the linear combination of blades,
formed by the geometric product of basis vectors.

Canonical basis

The canonical basis of a geometric algebra is the
set of basis blades provided. Using orthonormal
basis vectors e1, . . . , en ∈ Rn, this gives the canon-
ical basis:

{1,
e1, e2, . . . , en

e12, e13, . . . , e23, e24, . . . , e(n−1)n

e123, e124, . . .

. . .

e12...n}

where e12 denotes e1e2 and so on.

For grade r, there are
(
n
r

)
basis blades, giving a

total dimension of the canonical basis as:
n∑

r=0

(
n
r

)

2.1.6 The geometric product between mul-
tivectors

Any multivector can be expressed as a linear com-
bination between basis blades. Since the geomet-
ric product is distributive, the geometric product
between multivectors is simply found by summing
the geometric product between all components.

To evaluate the result of the geometric product
between two basis blades, this uses the anticom-
mution property to remove repeated vectors.

Example 1, no repeated vectors:

e123e45 = e1e2e3e4e5 = e12345

Example 2, repeated e2 with e22 = +1:

e123e2 = e1e2e3e2 = −e1e2e2e3 = −e12

Example 3, repeated e2 with e22 = −1:

e123e2 = e1e2e3e2 = −e1e2e2e3 = +e12

Whenever two vectors are swapped, this flips the
sign.

8

Grade of the geometric product between
blades

Blades of grade s and grade t will produce a blade
of grade r, where

|s− t| ≤ r ≤ min(n, s+ t)

If all vectors of the lower grade blade are contained
in the other, this gives the minimum possible blade
of grade |s − t|. If no vectors are shared between
the blades, the maximum grade s+ t is achieved.
There are only n basis vectors, so the maximum
number of distinct vectors between the two blades
is n and if s + t > n, there must be some shared
vectors.

For homogeneous multivectors of grades s and
t, denoted As and Bt, the resultant multivector
C = AsBt will contain blades ranging from grade
|s− t| to grade min(n, s+ t):

C = AsBt

= 〈AsBt〉|s−t| + 〈AsBt〉|s−t|+1

+ · · ·+ 〈AsBt〉min(n,r+s)

2.1.7 Generalising the inner and outer
product

For vectors, the inner and outer products are ex-
pressed using the geometric product:

a · b = 1

2
(ab+ ba) a ∧ b = 1

2
(ab− ba)

ab = a · b+ a ∧ b

Here, the inner product extracts the minimum
grade component of the geometric product, and
the outer product, the maximum grade component
of the geometric product.

Therefore, for general homogeneous multivectors
As and Bt:

As ·Bt = 〈AB〉|s−t| (4)
As ∧Bt = 〈AB〉s+t for s+ t ≤ n (5)

which extends to general multivectors since the
operators are distributive.

Specific expressions for the inner and outer
product

Consider the geometric product between a vector
a and homogeneous multivector of grade r, Br:

aBr = 〈aBr〉r−1 + 〈aBr〉r+1

Bra = 〈Bra〉r−1 + 〈Bra〉r+1

=

{
〈aBr〉r−1 − 〈aBr〉r+1 r odd
−〈aBr〉r−1 + 〈aBr〉r+1 r even

where the sign changes between 〈aBr〉r+1 and
〈Bra〉r+1 if r is odd, because an odd number of
swaps are required to move a from the front to
back. For the lower grade part, there is one less
swap since at some point a swaps places with its
basis vector, which commutes.

Using a ·Br = 〈aBr〉r−1 and a ∧Br = 〈aBr〉r+1:

a ·Br =

{
1
2
(aB +Ba) r odd

1
2
(aB −Ba) r even

(6)

a ∧Br =

{
1
2
(aB −Ba) r odd

1
2
(aB +Ba) r even

(7)

with commutative properties:

a ·Br =

{
Br · a odd
−Br · a r even

a ∧Br =

{
−Br ∧ a odd
Br ∧ a r even

These expressions can be found for vectors, since
the geometric product will always be split be-
tween two different grades, that have different sign
changes when reversing the order of operations.
For other combinations of homogeneous multivec-
tors, neat expressions don’t exist.

Interpreting the inner and outer products

A homogeneous multivector of grade r represents
a subspace of dimension r in a vector space Rn,
called the attitude, with a size and orientation.

The outer product between two blades finds the
union of these two subspaces, multiplying their

9

sizes, with an attitude that depends on the order
of basis vectors.

The inner product between two blades will find
the orthogonal complement. ie: A blade with all
basis vectors in the larger grade blade, that aren’t
contained in the smaller grade blade, is returned.
Again, the size is multiplied and the attitude de-
pends on the order of basis vectors.

The interpretation will be made clearer when look-
ing specifically at geometric algebra for 3D space.

2.1.8 Pseudoscalar and duality

For a geometric algebra of a vector space with
dimension n, the largest possible grade blade is
e12...n and there is only a single blade of this grade.

This blade is called the pseudoscalar, denoted I,
since like the scalar, there is only one blade of its
grade. The pseudoscalar always satisfies I2 = ±1,
the sign dependent on the dimension and signa-
ture.

Taking the geometric product with a multivector
is called the duality transform, and the resultant
multivector is called the dual. For example the
dual A∗ of A is formed by:

A∗ = AI

Note that it post-multiplies by the pseudoscalar.
The duality transform commutes or anticommutes
for homogeneous multivectors, dependent on the
grade and dimension. For a homogeneous multi-
vector of grade r, with dimension n, moving the
pseudoscalar to the front requires r(n− 1) swaps,
meaning:

IAr = (−1)r(n−1)ArI

The duality product takes the complement of a
blade. For example, for R3:

e1I = e23 e2I = e31 e3I = e12

Swapping the inner and outer product

Since the pseudoscalar extracts the complement, it
can also be used to swap the inner and outer prod-
ucts, making use of the general definitions of the
inner and outer production in eq. (4) and eq. (5).

Assuming r + s ≤ n:

Ar · (BsI) = Ar · 〈BsI〉n−s

= 〈ArBsI〉n−s−r

= 〈ArBsI〉n−(s+r)

= 〈ArBsI〉s+rI

Ar · (BsI) = (Ar ∧Bs)I (8)

2.1.9 Reverse

The reverse Ã of a multivector A is defined as the
result when the order of basis vectors are reversed.

For example:

A = e1 + e12 + e123 =⇒ Ã = e1 + e21 + e321

= e1 − e12 − e123

For an individual blade of grade r, the sign change
follows the pattern:

r num swaps sign change
1 0 +1
2 1 -1
3 3 -1
4 6 +1
6 15 -1
...

2.1.10 Norm

For a homogeneous multivector Ar, the norm is
defined as:

|Ar|2 = |Ar · Ar| = |〈A2
r〉| (9)

This is simply the sum of the square of the com-
ponents.

10

For a vector:

a = a1e1 + a2e2 + a3e3

a · a = a21 + a22 + a23
|a|2 = a · a

For a bivector:

B = B1e23 +B2e31 +B3e12

B ·B = −(B2
1 +B2

2 +B2
3)

|B|2 = −B ·B

And so on.

2.2 Using GA for geometric
operations

This section focus on the application to 3D geom-
etry. Therefore, it uses the geometric algebra with
signature G(3, 0) and canonical basis:

{1, e1, e2, e3, e23, e31, e12, I}

For consistency, the selected 2-blades are the duals
of the basis vectors.

2.2.1 Projection

For a normalised vector u, the inner product u · x
will project x onto this direction.

The inner product with a bivector produces a sim-
ilar result. Define a bivector B = b1 ∧ b2 = b1b2,
with b1 · b2 = 0. The dot product with a vector a
gives:

a ·B =
1

2
(aB −Ba)

=
1

2
(ab1b2 − b1b2a)

=
1

2
((2a · b1 − b1a)b2 − b1(2a · b2 − b2a))

= (a · b1)b2 − (a · b2)b1 −
1

2
b1ab2 +

1

2
b1ab2

= (a · b1)b2 − (a · b2)b1 (10)

which uses eq. (3) to reverse the order of the geo-
metric product.

This shows that a · B projects the vector a onto
the plane defined by B and rotates by 90 degrees
anticlockwise. B · a = −a · B so would rotate
clockwise instead.

2.2.2 Reflections

A reflection of a in a plane with unit normal n
(n2 = 1) is given by:

a′ = a− 2(a · n)n
= a− (an+ na)n

= a− a− nan
= −nan (11)

By sandwiching a vector between another (and
negating), this gives the reflection.

Reflecting other multivectors

This can be generalised to the reflection of any
blade and therefore any multivector.

Consider a blade Br = b1b2 . . . br, where {bi} are
some selection of basis vectors, and reflect along
some basis vector n.

If bi is parallel to n, then bin = nbi.
If bi is orthogonal, then bin = −nbi.

If the blade doesn’t contain n, meaning it is or-
thogonal to n, then:

nBrn = n(−1)rnBr = (−1)rBr

If the blade does contain n, meaning it has a com-
ponent in n, then:

nBrn = n(−1)r−1nBr = −(−1)rBr

When reflecting a homogeneous multivector Mr

along n, blades containing n should be reflected
(change sign), whereas blades that don’t contain
n should not. If Mr = M⊥ +M‖, then following
from the above two equations:

nMrn = nM⊥n+ nM‖n = (−1)r(M⊥ −M‖)

11

Therefore, to reflect a homogeneous multivector
of grade r, the reflection is given by:

M ′
r = (−1)rnMrn (12)

which is a generalisation of eq. (11).

2.2.3 Rotations

A rotation can be formed by two reflections:

a′ = mnanm = RaR̃ (13)

where R = mn is defined as a rotor.

A more useful expression for R is found by con-
sidering the vectors n and m necessary to rotate
an angle θ about a particular direction, defined by
the bivector B.

This is achieved by setting:

m = cos(θ/2)n+ sin(θ/2)nB

where B is the unit plane containingm and n such
that n · B = nB is perpendicular to n. This also
means nB = −Bn such that nBn = −B.

Therefore, the rotor is given by:

R = mn

= cos(θ/2)n2 + sin(θ/2)nBn

= cos(θ/2)− sin(θ/2)B (14)

Since B is a unit plane (B2 = −1), this can be
expressed in exponential notation:

R = exp(−Bθ/2) (15)

2.3 Conformal geometric algebra
(CGA)

2.3.1 Foundation of CGA

If euclidean space En is represented by a GA with
canonical basis G(n, 0), conformal geometric alge-
bra (CGA) uses a canonical basis of G(n+1, 1) to
represent conformal space. This extends the vec-
tor space with two additional basis vectors e+ and
e− where e2+ = +1, e2− = −1.

Null vectors

A null vector X satisfies X2 = 0. CGA defines
two specific null vectors, that act as more useful
basis vectors than e+ and e−:

n0 =
1

2
(e+ + e−) n∞ = (e− − e+) (16)

These null vectors are anticommuting with other
basis vectors, but don’t commute or anticommute
with themselves:

n0n∞ =
1

2
(e+ + e−)(e− − e+)

=
1

2
(2e+e− − 2)

= −1 + E

where E is defined as the Minkowski plane.

n0 · n∞ = −1
n0 ∧ n∞ = e+ ∧ e− = E

For a vector x that doesn’t contain e+ or e− (ie:
lies in euclidean space), x · n0 = 0 and x · n∞ = 0.

Conformal space

A point x in euclidean space maps to a vector in
conformal space with the mapping:

X = λ(n0 + x+
1

2
x2n∞) (17)

where the free variable λ indicates that the scale
of X is irrelevant.

12

The reason for this mapping is that it results in
the following:

X · Y ∝ (n0 + x+
1

2
x2n∞) · (n0 + y +

1

2
y2n∞)

∝ (−1

2
(x2 + y2) + x · y)

∝ (x2 + y2 − xy − yx)
∝ (x− y)2

The inner product between two conformal vectors
is proportional to the euclidean distance between
the corresponding vectors in euclidean space.

One result of this is that X must be a null vector,
since:

X2 = −1

2
|x− x|2 = 0

2.3.2 Normalised conformal vectors and
inverse mapping

A normalised conformal vector is given by:

X = n0 + x+
1

2
x2n∞ (18)

For an unnormalised vectorX ′, since n∞·n0 = −1,
it is normalised with:

X =
X ′

−n∞ ·X ′

allowing the euclidean point x can be extracted
with:

x = (X ′ · e1)e1 + (X ′ · e2)e2 + · · ·

When the conformal vectors are normalised, the
inner product specifically gives:

X · Y = −1

2
(x− y)2

2.3.3 Interpreting vectors in CGA

With the above mapping, a vector represents a
point. However a general vector in conformal
space represents a sphere. Specifically, a dual

sphere, but this distinction will be explained later.
For all results below, X is the normalised confor-
mal point for position x using eq. (18).

A sphere Σ∗ at position x and radius r is repre-
sented by:

Σ∗ = λ(X − 1

2
r2n∞) (19)

where a point y lies on this sphere if Y · Σ∗ = 0,
which is only true if |x− y|2 = r2.

For a sphere at position x = (r+ ρ)n, with radius
r, this represents a plane Π∗ with unit normal n
at a distance ρ from the origin, when at the limit
r →∞:

Σ∗ = λ(n0 + n(r + ρ) +
1

2
(ρ2 + 2rρ)n∞)

Π∗ = lim
r→∞

(Σ/r)

= λ(n+ ρn∞) (20)

using the fact that vectors can be freely scaled,
while representing the same object.

Like the sphere, Y · Π∗ = 0 if y lies on the plane,
since:

Y · Π∗ ∝ (n0 + y +
1

2
x2n∞) · (n+ ρn∞)

= −ρ+ y · n

which is equal to 0 if y · n = ρ.

In summary, all vectors X represent spheres, from
r = 0 (a point) to r =∞ (a plane) and for a con-
formal vector Y , if Y ·X = 0, the point y lies on
the point/sphere/plane.

2.3.4 Forming geometric primitives by in-
tersection

A (dual) circle is formed by the intersection of two
vectors Σ∗

1 and Σ∗
2, representing spheres or planes:

C∗ = Σ∗
1 ∧ Σ∗

2 (21)

Using eq. (10), the inner product with a conformal
vector Y is:

Y · C∗ = Σ∗
2(Y · Σ∗

1)− Σ∗
1(Y · Σ∗

2)

13

In other words, Y · C∗ = 0 only if Y · Σ∗
1 = 0 and

Y · Σ∗
2 = 0, meaning y lies on both spheres and

therefore lies on the intersection of the spheres.

Therefore a conformal bivector always represents a
circle or a line (when both X1 and X2 are planes),
representing a circle at infinity.

Note, that this line doesn’t have to pass through
the origin.

This usage of intersection extends further. A
trivector represents the intersection of three
spheres, which is a point pair.

2.3.5 Dual and direct geometric primitives

The geometric primitives given previously:
spheres, planes, circles, lines and point-pairs, were
given in their dual form.

For example, C∗ = X1 ∧X2 is a dual circle. The
direct circle is related by C = C∗I using the du-
ality transform.

Direct geometric primitives can conveniently be
found by the outer product of points that lie on
the shape.

A direct sphere is a quadvector, given by:

Σ = X1 ∧X2 ∧X3 ∧X4

for four points that lie on the sphere.

A direct plane is the same, but with one point at
infinity, represented by n∞:

Π = X1 ∧X2 ∧X3 ∧ n∞

A direct circle is given by:

C = X1 ∧X2 ∧X3

for three points that lie on the circle.

And a direct line:

L = X1 ∧X2 ∧ n∞

Finally, a direct point pair is:

P = X1 ∧X2

Direct geometric primitives are denoted Σ, Π, etc,
while the dual forms are denoted Σ∗, Π∗, etc.

2.3.6 Intersecting direct geometric primi-
tives with the meet operator

By using eq. (8) to use the dual to swap the inner
and outer product, it can be shown that for direct
geometric primitives X and Y , the intersection is
given by:

X ∨ Y = (X∗ ∧ Y ∗)∗ (22)

where ∨ is called the meet operator.

2.3.7 Interpreting intersection results

The intersection result of interest in this project is
the point pair, so only the method of interpreting
this will be given.[8]

Firstly, for the dual point pair T ∗, the dual mid-
plane Π∗ is found by:

Π∗ = T ∗ · n∞

Secondly, a projection operator (a rotor) is cre-
ated:

P = 1 +
T ∗√
(T ∗)2

Finally, the two points of the point pair are ex-
tracted by applying the transformation P or it’s
inverse (the reverse):

X(1) = PΠP̃ X(2) = P̃ΠP

14

3 Kinematics

This section will outline how to solve the kine-
matics of the delta and serial robot, first using
conventional methods[9], then CGA.

An overview of the representation of rigid body
transformations using both methods will also be
given, necessary for the kinematics of serial robots.

Finally, the theory required for moving robots
through a trajectory is given.

3.1 Delta robot

Figure 3 shows the structure of the delta robot
and notation used for the various points, lengths
and angles.

Figure 3: Structure of the delta robot.

The forward kinematics solution is the intersection
of three spheres.

The inverse kinematics solution can be found for
each joint individually, and involves finding the
joint angle θi that gives a pseudo-elbow position
a distance L2 from the end effector position.

3.1.1 Forward kinematics with conven-
tional methods

Figure 4: Notation used for solving the forward
kinematics of the delta robot conventionally.

Using the notation outlined in Figure 4, the points
di for each joint i are evaluated:

di = (R1 −R2 + L1 cos(θi))ui − L1 sin(θi)k (23)

The objective is then to solve for x such that:

|x− di| = L2 ∀i

This is equivalent to intersecting three spheres of
length L2 about the three points di. The first step
is to find the circle formed by the intersection of
the first two points:

dc =
1

2
(d1 + d2)

v1 =
d2 − d1

|d2 − d1|

v3 =
v1 × (d3 − d1)

|n1 × (d3 − d1)|
v2 = v3 × v1

15

w =
1

2
|d2 − d1|

r =
√
L2
2 − w2

With this, the solution is solved by finding the
angle φ such that L2

2 = |x− d3|2, with:

x = dc + r(v2 cos(φ)− v3 sin(φ))

d3 = dc + pv1 + qv2

Letting p = (d3 − dc) · v1, q = (d3 − dc) · v2 and
t2 = p2+ q2 = |d3 − dc|2, the final solution for phi
comes out as:

α = cos−1

(
t2 − w2

2qr

)
Which gives two possible solutions for x:

x = dc + r(v2 cosα± v3 sinα)

There are two valid configurations for a given set
of joint angles. Either the end effector is above
the base or below.

3.1.2 Inverse kinematics with conventional
methods

For inverse kinematics, each angle θi is solved in-
dependently to satisfy:

|di − x|2 = L2
2

Using the same definition of di as in eq. (23), this
relationship can be re-arranged into the form:

P cos θi +Q sin θi = k

with:

P = 2L1(R1 −R2 − xTui)

Q = 2L1(x
Tk)

k = L2
2 − L2

1 − (R1 −R2)
2

+ 2(R1 −R2)x
Tui − |x|2

With R2 = P 2 + Q2 and φi = tan−1(Q/R), this
gives the solution:

θi = φi ± cos−1

(
k

R

)
or, more conveniently:

ψi = cos−1(k/R)

θi = φi ± ψi

Each joint has two solutions, either side of φi, cor-
responding to an inverted solution for θi = φi−ψi

and a non-inverted solution for θi = φi + ψi.

3.1.3 Forward kinematics with CGA

Figure 5: Notation used for solving the for-
ward kinematics of the delta robot with CGA. The
two possible solutions x(1) and x(2) correspond to
the point pair formed by the intersection of three
spheres about the points di.

Following the notation given in Figure 5, dual
spheres can be defined using eq. (19). These are
then intersected using the outer product to give
the intersection point pair T :

di = (R1 −R2 + L1 cos(θi))ui − L1 sin(θi)e3

Di = n0 + di +
1

2
d2in∞

Σ∗
i = Di −

1

2
L2
2n∞

T = I5(Σ
∗
1 ∧ Σ∗

2 ∧ Σ∗
3)

The two solutions X(1) and X(2) are found with
Section 2.3.7, then normalised allowing the eu-
clidean positions x(1) and x(2) to be extracted.

16

The delta robot used in this project has the end
effector below the base, so the solution with the
smaller z component x · e3 is selected.

3.1.4 Inverse kinematics with CGA

Figure 6: Notation used for solving the inverse
kinematics of the delta robot using CGA. For each
joint θi, there are two possible solutions, corre-
sponding to two possible locations of the pseudo-
elbow positions, d(1)i or d(2)i .

Inverse kinematics is simpler, as each chain can be
solved independently. This requires finding the
displacement bi − ai, from which θi can be ex-
tracted with simple trigonometry. This is equiva-
lent to finding the displacement di − ei as shown
in Figure 6.

A dual sphere Σ∗
x is defined about the end effec-

tor the same way as before and intersected with
dual circles C∗

i about each point fi. The circles
are formed using eq. (21) by intersecting the ap-
propriate dual sphere and plane:

X = n0 + x+
1

2
x2n∞

Σ∗
x = Xi −

1

2
L2
2n∞

fi = (R1 −R2)ui

Fi = n0 + fi +
1

2
f 2
i n∞

C∗
i = ui ∧ e3 ∧ (Fi −

1

2
L2
1n∞)

Ti = I5(Σ
∗
x ∧ C∗

i)

The two solutions, d(1)i and d(2)i are extracted. The
solution with a larger component in ui, ui · di is
selected and allows θi to be calculated:

θi = sin−1

(
(di − fi) · (−e3)

L1

)

3.1.5 Jacobian

The Jacobian is found the same way for conven-
tional and CGA methods. One method of finding
the Jacobian is to differentiate the inverse kine-
matic solution, but a simpler method is to con-
sider velocity constraints.

The velocity at each pseudo elbow is vi = θiv̂i,
with:

v̂i = −L1(cos θik + sin θiui)

The direction of the lower link is given by the dis-
placement from the psuedo-elbow to end effector
with:

ni =
x− di

|x− di|

The end effector velocity, ẋ must satisfy:
ẋ · ni = vi · ni

nT
i ẋ = nT

i v̂iθi

or more generally, in terms of small changes:
nT

i ∆x = nT
i v̂i∆θi

Combining all joints, this gives:
Jx∆x = Jθ∆θ

with:

Jx =

← nT
1 →

← nT
2 →

← nT
3 →

 Jθ =

nT
1 v̂1 0 0
0 nT

2 v̂2 0
0 0 nT

3 v̂3

such that the forward and inverse Jacobian have
the form:

J = J−1
x Jθ J−1 = J−1

θ Jx

Singularities occur when J is non-invertible. This
occurs when |Jθ| = 0, when any nT

i v̂i = 0. This
corresponds to the case when the upper and lower
links are in the same plane perpendicular to the
pseudo-elbow position, meaning that the chain is
fully extended and has reduced mobility.

17

3.1.6 Dependent joints

To fully define the robot state, the dependent
joints αi, βi and γi must be supplied. This will
allow for visualisation of the robot model.

For both conventional and CGA methods, once
the points x and d1,d2,d3 have been found, the
dependent joint positions are found with:

βi = atan2((x− di) · (−k),
(x− di) · (−ui))

αi = π − θi − βi

γi = sin−1

(
(x− di) · v̂i

L2

)

3.2 Representing rigid body
transformations conventionally

3.2.1 Rotations

The rotation matrix R defining a rotation about
an axis ω̂ by an angle θ is equal to:

R = I + sin(θ)S(ω̂) + (cos(θ)− 1)S(ω̂)2 (24)

where the skew-symmetric matrix S(ω̂) gives the
cross product:

ω̂ × x = S(ω̂)x =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

x (25)

Matrix exponential parameterisation

This has the matrix exponential parameterisation:

R = exp(S(ω̂)θ) = exp(S(ω̂θ)) (26)

where the vector ω̂θ is called the exponential co-
ordinates.

For a constant rotation axis ω̂:

dR

dθ
= S(ω̂)R = RS(ω̂) (27)

And:

R(θ + δθ) = R(θ) +R(θ)S(ω̂)δθ +O(δθ2)
= R(θ)(I + S(ω̂)δθ)

= R(θ)δR

or = R(θ) + S(ω̂)R(θ)δθ

= δRR(θ)

for an incremental rotation of δθ:

δR = I + S(ω̂)δθ +O(δθ2) (28)

Angular velocity

If parametrisingR with respect to time, for a time-
varying rotation axis ω̂(t), there are two ways to
parameterise this:

R(t+ δt) = R(t)δR or δRR(t)

For the first case, with δθ = θ̇(t)δt:

R(t+ δt) = R(t)δR

= R(t)(I + S(ω̂(t))θ̇(t)δt+O(δt2))

Ṙ = lim
δt→0

(
R(t+ δt)−R(t)

δt

)
= R(t)S(ω̂(t))θ̇(t)

= R(t)S(ω(1)(t))

Similarly, for the second case:

Ṙ = S(ω(2)(t))R(t)

In both cases, the angular velocity ω(t) =
ω̂(t)θ̇(t), about an instantaneous rotation axis
ω̂(t). However, these angular velocities corre-
spond to different reference frames.

The first definition, ω = ω(1) is more useful so
will be used, giving:

Ṙ(t) = R(t)S(ω(t)) (29)

For a fixed point x transformed to x′ = Rx, the

18

velocity in the moving frame is equal to:

v = RTv′

= RT d

dt
(Rx)

= RTRS(ω)x

= S(ω)x

= ω × x

as expected.

3.2.2 Rigid body transformations

A rigid body transformation T has the structure:

T =

[
R p
0T 1

]
(30)

which gives a transformed vector:[
x′

1

]
= T

[
x
1

]
x′ = p+Rx

The transformed vector is rotated byR then trans-
lated by p.

Screw transformations

For a rotation, rotating about an axis gave the
exponential parameterisation. Similarly for a
rigid body transformation, a screw transforma-
tion leads to the exponential parameterisation. A
screw transform consists of a rotation about a line
and a translation along that line, as shown in Fig-
ure 7.

Figure 7: A screw transformation.

with a screw transformation, the transformed vec-
tor x′ is:

x′ = −a+ hθω̂ +R(x− a)

= Rx+ (R− I)a+ hθω̂

= Rx+ p

R is the rotation of the twist transformation, but
p is formed by the translation caused by this ro-
tation and the translation along the twist axis.

p = θv̂‖ + v̂⊥(1− cos θ) + ω̂ × v̂⊥ sin θ

= θv̂‖ + v̂⊥(1− cos θ) + S(ω̂)v̂⊥ sin θ (31)

Matrix exponential parameterisation

Analogous to R = exp(S(ω̂)θ) for rotations, the
rigid body transformation T has an exponential
parameterisation.

T = exp(ξ(û)θ) = exp(ξ(ûθ)) (32)

with:

û =

[
ω̂
v̂

]
ξ(û) =

[
S(ω̂) v̂
0T 0

]
(33)

This can be shown to give the correct transforma-
tion for the screw transformation defined by θ, ω̂
and v̂.

The vector ûθ is the exponential coordinates of
the rigid body transformation.

Additionally, the matrix ξ is called the twist and
the vector û alone is called the twist coordinates.

For constant twist coordinates û:
dT

dθ
= ξ(u)T = Tξ(û) (34)

And:

T (θ + δθ) = T (θ)δT or δTT (θ)

for an incremental transform by δθ:

δT = I + ξ(û)δθ +O(δθ2) (35)

19

Spatial velocity

Like rotation, T can be parameterised by time to
give:

Ṫ = Tξ(u(1)) or ξ(u(2))T

for the spatial velocity u = ûθ̇. Again, the first
definition, u = u(1) is more useful, so will be used,
giving:

Ṫ (t) = T (t)ξ(u) (36)

The spatial velocity contains both angular and lin-
ear velocity:

u =

[
θ̂θ̇

uθ̇

]
=

[
ω
u

]
(37)

With this, the velocity of a point P is:[
vP

0

]
= T−1

[
v′
P

0

]
= T−1 d

dt

(
T

[
xP

1

])
= T−1Tξ(u)

[
xP

1

]
= ξ(u)

[
xP

1

]
vP = v + ω × xP

as expected.

3.3 Serial robot kinematics using
conventional methods

3.3.1 Forward kinematics

An N degree of freedom serial robot consist of
a fixed base and N links. Reference frame 0 is
attached to the fixed base, and reference frames
1, 2, . . . , N fixed to each link.

The pose of frame j, within frame i is defined by
the rigid transformation jTi such that a fixed point
jx in frame j transforms to the point ix in frame
i with: [

ix
1

]
= iTj

[
jx
1

]

as shown in Figure 8.

Figure 8: Notation for reference frames and the
transformation of the position of a point between
reference frames.

For a n-link serial chain, the pose of the end ef-
fector is given by concatenating each transform
between links:

T = 0Tn = 0T1
1T2 · · · n−1Tn (38)

Joints and DH parameters

Joints between links parameterise the rigid body
transformations i−1Ti. Simple joints have one de-
gree of freedom, denoted qi, corresponding to an
angle (revolute joints) or a distance (prismatic
joint). Compound joints, which have more than
one degree of freedom, can be expressed using mul-
tiple simple joints.

A common parameterisation, which is used in this
project, are the Denavit-Hartenberg parameters
(DH parameters), shown in Figure 9, which can
represent any revolute joint.

Figure 9: DH parameters convention for defin-
ing the transformation between two links that are
connected with a revolute joint.

20

For joint i, parametrising the transformation from
link i− 1 to link i, the transformation consists of
the following steps:

1. Rotate by θi about the z-axis.

2. Translate by di along the z-axis.

3. Rotate by αi−1 about the x-axis.

4. Translate by ai−1 along the x-axis.

All parameters are constant, defined by the robot
geometry, except for θi, set equal to qi, which is
variable.

If the DH parameters of the robot and the joint
positions {qi} are known, the final end effector
pose given in eq. (38) can be found. From this, the
position and orientation can be read, performing
forward kinematics.

3.3.2 Spatial velocity and the Jacobian

For a fixed point ixA in frame i, the spatial ve-
locity iu of the reference frame gives the velocity
experienced by this point as:[

ivA

0

]
= ξ(iu)

[
ixA

1

]
ivA = iv + iω × ixA

as seen earlier, for spatial velocity defined by
eq. (37), satisfying eq. (36).

For joint i, the spatial velocity of link i is equal to
iui =

iûiq̇i, for constant twist coordinates:

iûi =
[
0 0 1 0 0 0

]
which has a simple structure due to the use of DH
parameters.

Spatial velocity of the end effector

The goal is to find the spatial velocity of the end
effector frame, denoted nu, where the derivative
of the end effector transform satisfies:

d

dt
(0Tn) =

0Tnξ(
nu)

Evaluating the derivative with the product rule
and eq. (36) gives:

d

dt
(0Tn) =

d

dt

(
0T1 · · · n−1Tn

)
=

n∑
i=1

(
0T1 · · · i−1Tiξ(

iûi) · · · n−1
)
q̇i

= 0Tn

[
n∑

i=1

iT−1
n ξ(iûi)

iTnq̇i

]

= 0Tn

[
n∑

i=1

ξ(nûiq̇i)

]

= 0Tnξ

(
n∑

i=1

nuiq̇i

)

which defines the end effector spatial velocity as:

nu =
n∑

i=1

nûiq̇i = J q̇

for q̇ =
[
q̇1 · · · q̇n

]T and:

J =

 ↑ ↑
nû1 · · · nûn

↓ ↓

Intuitively, this is summing the contribution to
spatial velocity from each joint, after transform-
ing the spatial velocity to the end effector frame.

Transforming spatial velocity

The vector nui represent the contribution to the
spatial velocity of the end effector from joint i. To
find this, the spatial velocity of link i from joint i
(iui) is transformed to the end effector.

When transforming from i to j:

ξ(ju) = iT−1
j ξ(iu)iTj

which corresponds to:

ju = jXi
iu

jXi =

[
jRT

i 0
−jRT

i S(
jpi)

jRT
i

]
for a spatial velocity transform matrix jXi.

21

This relates the linear and angular velocity be-
tween the two links as:

jω = jRT
i
iω

jv = jRT
i (

iv + iω × jpi)

This shows that the spatial velocity of frame j is
formed by adding p × iω to the linear velocity,
then rotating both the linear and angular velocity
by jRT

i to refer to link j.

Finally, to transform a spatial velocity to the end
effector:

nûi =
nXn−1 · · · i+1Xi

iûi

3.3.3 Inverse kinematics

The Jacobian can be used to define incremental
changes to the end effector transform with:

δT ≈ I + ξ(δξ) = I + ξ(Jδq)

where δξ is the change in exponential coordinates
ûδθ.

This is useful for inverse kinematics, where:

T (q + δq) ≈ T (q)δT = T (I + ξ(δq)) (39)

With this, Newton’s method can be used to nu-
merically solve the inverse kinematics.

Denote the current joint positions q, with cor-
responding pose T (q). The target pose is T∗ =
T (q∗) and the goal is to find q∗.

Let q∗ = q + δq, and by using eq. (39):

T∗ = T (q + δq)

≈ T (q)δT

= T (q)(I + ξ(Jδq))

This corresponds to solving the least squares prob-
lem:

δq = J(q)+ξ−1
[
T−1(q)T∗ − I

]
where J(q)+ is the pseudoinverse of the Jacobian
and ξ−1[·] is the operation of solving ξ(ξ) = (·)

which simply involves reading the appropriate ma-
trix elements.

The pseudoinverse can be found using the SVD,
allowing for removing singular values that are be-
low a certain value. Denoting the solution to this
as δq(q), the final solution is reached by itera-
tively applying:

qk+1 = qk + δq(qk)

until the norm of the change in twist coordinates,
|Jδq| falls below a particular threshold.

3.4 Representing rigid body trans-
formations using CGA

3.4.1 Rotations

Starting with GA in three dimensions (not extend-
ing to CGA yet), a rotation is defined by a rotor R,
such that a rotated vector is given using eq. (13),
x′ = RxR̃.

Matrix exponential parameterisation

As seen in eq. (14) and eq. (15), the rotor has an
exponential parameterisation for rotating about
an axis:

R = exp(−Bθ/2) = cos(θ/2)−B sin(θ/2)

For a constant B:
dR

dθ
= −1

2
BR or − 1

2
RB (40)

For an incremental rotation:

δR = 1− 1

2
Bδθ +O(δθ2) (41)

Angular velocity

If parametrising a rotor as R(t+δt) = R(t)δR, for
time varying rotation axis B, where:

δR = 1− 1

2
B(t)θ̇(t)δt+O(δt2)

then:
Ṙ = −1

2
RΩ (42)

22

where Ω(t) = B(t)θ̇(t) is a bivector representing
the angular velocity about the instantaneous ro-
tation axis B(t).

With this a fixed point x experiences velocity:

v = R̃v′R

= R̃
d

dt

(
RxR̃

)
R

= −1

2
R̃
(
RΩxR̃ +RxΩ̃R̃

)
R

=
1

2
(xΩ− Ωx)

= x · Ω

which is equivalent to v = ω × x.

3.4.2 Rigid body transformations

Similar to how homogeneous matrices are conven-
tionally used for rigid body transformations, re-
quiring an additional component to allow transla-
tions, GA allows for translations and rigid body
transformations by using CGA.

Rotations in CGA

Rotors apply to conformal points in the same way:

X ′ = RXR̃

= n0RR̃ +RxR̃ +
1

2
x2n∞RR̃

= n0 + x′ +
1

2
(x′)

2

using x′2 = Rx2R̃ = x2, so rotation doesn’t affect
the norm as expected.

Versors, translations and rigid body trans-
formations

Rotors are not the only operators that are applied
using RxR̃. A versor V is any object applied in
this way, all formed by an even number of reflec-
tions, using eq. (12), such that a transformation
is always applied with:

x′ = V xṼ (43)

without a sign dependent on the grade of x.

A rotor is a type of versor, containing a scalar
and bivector. However, a multivector with scalar,
bivector and quadvector is also a versor, but not
a rotor.

Rotors which contain null vectors component will
no longer perform rotations of conformal vectors.
One example is the translation rotor:

Rt = 1 +
1

2
n∞p = exp

(
1

2
n∞p

)
(44)

Using this, a rigid body transformation versor,
denoted T , is defined by combining rotation and
translation rotors:

T = (1 +
1

2
n∞p)(cos(θ/2)−B sin(θ/2)) (45)

Screw transformations

A rigid body transformation versor has an expo-
nential parametrisation, analogous to the conven-
tional case, where:

T = exp(−1

2
Ûθ) (46)

where:
Û = B + V̂ V̂ = v̂n∞ (47)

Û is a bivector representing a twist coordinates,
where B contains the angular component an V
the linear component.

The incremental transform is:

δT = 1− 1

2
Ûδθ +O(δθ2) (48)

Spatial velocity

Using eq. (48) with δθ = θ̇(t)δt, the derivative of
T with respect to time is:

Ṫ = −1

2
T (t)U (49)

for spatial velocity bivector U(t) = Û(t)θ̇(t) with
instantaneous twist coordinates bivector Û(t), de-
fined by eq. (47).

23

The spatial velocity bivector contains the angular
and linear velocity with:

U = Bθ̇ + V̂ θ̇ = Ω+ V (50)

where Ω is the angular velocity bivector and V =
vn∞ is a bivector representing the linear velocity
v.

3.4.3 Velocity with CGA

Consider X = n0 + x + 1
2
x2n∞, where the point

x moves with velocity ẋ = v. Differentiating the
conformal point gives:

Ẋ = ẋ+
1

2
(xẋ+ ẋx)n∞

= ẋ+ x · ẋn∞

= v + x · vn∞

A bivector V = vn∞ representing the velocity of
this point is extracted with:

V = Ẋn∞ = vn∞ (51)

This is identical to how linear velocity is repre-
sented in the spatial velocity bivector in eq. (50).

With this, the velocity of a fixed point P can be
found:

VP = R̃V ′
PR

= R̃
d

dt

(
TXP T̃

)
n∞R

= −1

2
R̃
(
TUXP T̃ + TXP Ũ T̃

)
n∞R

= R̃T
1

2
(XPU − UXP)T̃ n∞R

= R̃T (XP · U)T̃ n∞R

= R̃RtR(v + xP · Ω)R̃Ṽtn∞R

= (v + xP · Ω)n∞

where Rt commutes with R(· · ·)R̃ and disappears
because there is no n0 term.

This gives vP = v + xP · Ω as expected.

3.5 Serial robot kinematics using
CGA

3.5.1 Forward kinematics

When using CGA, versors represent the pose of
reference frames in the same way as rigid body
transformation matrices.

A point jx in frame j transforms to the position
ix in frame i with:

jX = jTi
iXjT̃i

for the corresponding conformal points X.

For an n-link serial chain, the pose of the end ef-
fector is represented by:

T = 0Tn = 0T1 · · · n−1Tn (52)

analogous to eq. (38) for conventional methods.

Similarly, the versor for joint i is parametrised by
qi using DH parameters and the spatial velocity
bivector of frame i is iU , defined by eq. (50), sat-
isfying eq. (49).

After evaluating the end effector versor, the posi-
tion vector and orientation rotor can be extracted.
Details of this given in Appendix A.

3.5.2 Spatial velocity and the Jacobian

Like with conventional methods, the goal is to find
nU such that:

d

dt

(
0Tn
)
= 0Tn

nU

The spatial velocity for a given joint is iUi = iÛiq̇i.
When using DH parameters, the twist coordinates
are equal to:

iÛi = e12

Using the product rule and eq. (49), the derivative
of the transform is evaluated:

24

d

dt

(
0Tn
)
=

d

dt

(
0T1 · · · n−1Tn

)
= 0Tn

[
n∑

i=1

iT̃n
iUi

iTnq̇

]

= 0Tn

[
n∑

i=1

nUiq̇

]

Therefore:
nU =

n∑
i=1

nUiq̇i

which is equivalent to a vector representation:

nu =
n∑

i=1

nuiq̇i = J q̇

with:

J =

 ↑ ↑
nû1(

nU1) · · · nûn(
nUn)

↓ ↓

where nui(

nUi) indicates the vector equivalent of
the spatial velocity bivector. This simply involves
reading the components along e23, e31, etc.

Transforming spatial velocity

Transforming from iU to jU uses:
jU = jT̃i

iU jTi

noting that the reverse of the transform is applied
instead.

To show that this gives the expected result:

jU = jR̃i(1−
1

2
n∞

jpi)(
iΩ + ivn∞)(1 +

1

2
n∞

jpi)R

= R̃(Ω + (iv + jpi · iΩ)n∞)R

= R̃iΩR +
(
R̃
(
iv + jpi · iΩ

)
R
)
n∞

= jΩ + jvn∞

which transforms the linear and angular velocity
in the same was as seen earlier.

With this, the twist coordinates of each joint are
referred to the end effector directly by the joint
transform versors, giving:

nÛi =
nT̃n−1 · · · i+1T̃i

iÛ i+1Ti · · · nTn−1

3.5.3 Inverse kinematics

Denoting U(u) the bivector equivalent of u:

δT ≈ 1− 1

2
δU = 1− 1

2
U(Jδq)

This means that an incremental change in joint
positions gives:

T (q + δq) ≈ T (q)(1− 1

2
U(Jδq)) (53)

Denote the current joint positions q. The target
pose is represented by versor T∗ = T (q∗).

Let q∗ = q + δq and by using eq. (53):

T∗ ≈ T (q)(1− 1

2
U(Jδq))

U(Jδq) = 2(1− T̃ T∗)

This corresponds to the least squares problem:

δq = J(q)+U−1
[
2(1− T̃ T∗)

]
where u = U−1 [·] denotes the operation of solving
U(u) = (·), which requires reading the appropri-
ate components from the bivector.

If the solution to the above is denoted δq(q), the
final solution is converged on with:

qk+1 = δq(qk)

25

3.6 Control

This section looks at how the kinematic solutions
provided for the delta and serial robot can be ap-
plied to manual control of the robot and having it
move through a trajectory between poses[10].

3.6.1 Manual control

Instantaneous forward kinematics uses the Jaco-
bian to find the end effector twist for a given set
of joint velocities q̇:

u = J q̇

For the delta robot, this is only contains linear ve-
locity, while for the serial robot it contains angular
and linear velocity.

In the case of the serial robot, the spatial veloc-
ity is given in the end effector frame. For manual
control, it is easier for the linear velocity to be
expressed in the fixed frame, while keeping the
angular velocity defined in the end effector frame.
Denoting this adjusted spatial velocity as u∗:

u∗ = J∗q̇

with a modified Jacobian:

J∗ =

[
I 0
0 0Rn

]
J (54)

When using CGA, the component of the twist vec-
tor corresponding to linear velocity can be rotated
by 0Rn to give the same effect.

To perform instantaneous inverse kinematics, ie:
choose the joint velocities to give a desired twist,
the inverse relationship needs to be solved:

q̇ = J+
∗ u∗

The pseudoinverse can be found using SVD to
threshold the singular values. This avoids the
pseudoinverse having large singular values, which
leads to undesired large joint velocities.

Using this, the end effector can be commanded to
move with a desired twist. To avoid getting close

to singularities a constraint on the allowable Jaco-
bian singular values can be added. When the min-
imum singular value falls below a certain value,
mark that state as invalid and stop the robot from
continuing with that twist.

3.6.2 Interpolating trajectories

The second method of control required is to inter-
polate and execute trajectories between the cur-
rent pose T0 and target pose T1.

Let u denote the normalised “progress” between
the two poses and τ = t/T the normalised time,
for total travel time T . A cubic polynomial u(τ)
is fitted such that:

u(0) = 0 u(1) = 1 u̇(0) = 0 u̇(1) = 0

which has the form:

u(τ) = 3τ 2 − 2τ 3 (55)

Interpolating position is the same for conventional
and CGA:

δp = p1 − p0
p(u) = p0 + uδp (56)

To interpolate a rotor:

δR = R̃0R1

= exp(−1

2
Bδθ)

R(u) = R0 exp(−
1

2
Buδθ) (57)

The conventional method uses SLERP to inter-
polate quaternions, which is identical to how ro-
tors are interpolated. Note, that like with SLERP,
when θ > π, the value θ − 2π is interpolated in-
stead in order to rotate about the shorter angle.

The trajectory has a target linear velocity and an-
gular velocity, selecting the limiting choice. Ad-
ditionally, there is a maximum joint speed which
shouldn’t be exceeded.

26

At any point during this trajectory, the linear and
angular velocity are given as:

ṗ =
6

T
τ(τ − 1)δp

ω =
6

T
τ(τ − 1)ω̂δθ

Ω =
6

T
τ(τ − 1)Bδθ (58)

The maximum linear and angular speeds are
1.5T |δp| and 1.5Tδθ such that for maximum lin-
ear and angular speeds vmax and ωmax, the trial
trajectory time T is equal to:

T = max

(
vmax

1.5|δp|
,
ωmax

1.5δθ

)
(59)

which ensures both linear and angular velocity are
less than or equal to their maximum allowed value.

For a constant time-step size δT , the number of
data-points is:

N = (T/∆T) + 1 (60)

Finally, the trajectory is interpolated and a trajec-
tory of corresponding joint positions is returned.
The maximum joint speed is also found, such that
the trajectory time can be scaled if this is larger
than a target maximum joint speed.

The algorithm for fitting the trajectory is given in
Algorithm 1.

Algorithm 1 Interpolate a trajectory
q̇max ← 0
q0 ← Current Joint Positions
for n = 1, 2, . . . , N do
τn ← (n+ 1)/N
tn ← τn × T
un ← 3τ 2 − 2τ 3

qn ←IK(qn−1, p(un), R(un))
vn ← (6/T)τ(1− τ)δp
ωn ← (6/T)τ(1− τ)ω̂δθ
q̇n ← VEL_IK(qn, vn, ωn)
q̇max ← max(q̇max, |q̇n|)

end for
if q̇max > q̇target then

for n = 1, 2, . . . , N do
tn ← tn × (q̇target/q̇max)

end for
return {qn}Nn=1, {tn}

N
n=1, q̇max

end if

where:

• IK(q0, p, R) solves the inverse kinematics for
position p and orientation R, starting from
initial joint positions q0.

• VEL_IK(q, v, ω) solves the instantaneous
inverse kinematics for current joint positions
q, target linear velocity v and target angular
velocity ω.

This could easily return the joint speeds as well,
which could be used in joint control. However,
for this project only the position will be used for
simplicity.

27

4 Code

In order to demonstrate that these methods can
be used for control of robots, they will be used
for a practical control task, on simulated and real
robots.

The task used to demonstrate this is the following:

• Allow the end effector to be manually con-
trolled using an Xbox controller, including
the position, orientation and angle of a grip-
per.

• Provide a real-time visualisation of the
robot state.

• Allow the user to record a set of waypoints,
and have the robot automatically move be-
tween these.

Robotics software typically consists of a large
number of components, operating at a range of
rates, with varying levels of complexity. The re-
sult is that robotics software is best written as
distributed software, where different components
run on different processes and communicate via a
message passing protocol.

To facilitate this, a middleware is required. In this
case, the robotics operating system (ROS) will be
used, due to being open source and having a well-
developed ecosystem.

ROS calls individual components nodes. Nodes
run as separate (possibly multithreaded) pro-
cesses. Communication is done via a pub-sub pro-
tocol, organised using topics, or via a client/server
protocol, organised using services.

The following code will be required:

• A dedicated CGA library, used to perform
fundamental CGA operations as well as pro-
vide functions for geometry and transforma-
tions.

• A kinematics library for defining a robot
model and performing kinematics calcula-
tions.

• A ROS package that defines robot models
for the delta and serial robots and nodes to
visualise and control these, able to control
simulated or real robots.

ROS nodes can be written using C++ or Python,
but because kinematics usually needs to per-
formed quickly, C++ was chosen.

This section will give an overview of the CGA and
kinematics libraries along with the ROS package
that makes use of them. For more details of code,
GitHub links are given in Appendix C.

For simulation, the Gazebo robotics simulator[11]
was used. Information on the hardware used is
given in Appendix D.

4.1 CGA library

A number of C++ CGA libraries exist already.
However, it was decided to write a custom CGA
library. This would allow for finer control of the
data structures and functions provided to focus
on kinematics. Compared to other libraries which
aim to provide a general library, supporting a
range of different algebras, a custom library would
be simpler to use and likely more efficient.

The CGA library directory contains the following:

cga/
 generator/
 main.py
 structs.py
 operations.py
 write.py
 include/cga/
 cga.h
 constants.h
 geometry.h
 transform.h
 src/
 cga.cpp

The library consists of a code generator under
generator/, written in Python; and the C++

28

source code under the include/ and src/ direc-
tories. This includes the cga.h and cga.cpp files
written by the code generator and a number of
other header files to provide specific functions.

4.1.1 Code generator

Figure 10: Overview of how the CGA code gen-
erator works.

The code generator writes the cga.h and cga.cpp
source files, which define a struct for each CGA
object and a number of operations between them.
Within the generator, classes are used to represent
structs and objects, which are then used to write
the code, as shown in Figure 10.

Symbolic algebra

The sympy and galgebra python packages are
used to provide symbolic algebra for conformal ge-
ometric algebra.

Figure 11 shows how the galgebra package is used
to define a number of basis vectors. These are later
used when defining structs.

1 from galgebra.ga import Ga
2 G = Ga("e_1 e_2 e_3 e_4 e_5",
3 g=[1, 1, 1, 1, -1])
4 e1, e2, e3, e4, e5 = G.mv()
5 eo = 0.5*(e4 + e5)
6 ei = (e5 - e4)
7 s = e1*e1

Figure 11: Code used to define basis vectors for
CGA. Creates the geometric algebra by provid-
ing names of basis vectors and a signature, then
defines two null vectors, eo and ei for n0 and n∞.

Symbolic algebra allows for creating and manip-
ulating algebraic expressions, consisting of some
combination of geometric algebra objects and vari-
able names.

If two arguments for an operation are given as
symbolic algebra expressions, with specific vari-
able names, the final expression will also be in
terms of these variable names.

Structs

All structs are represented by the Struct class.

Figure 12 shows how a Vector struct is created.
The object is first instantiated with just a name.
It is fully defined by adding variables. These are
the variables that will appear as members in the
struct itself, as shown in Figure 13.

1 Vector = Struct("Vector")
2 Vector.add_variable("e1", e1, e1)
3 Vector.add_variable("e2", e2, e2)
4 Vector.add_variable("e3", e3, e3)
5 Vector.add_variable("eo", eo, -ei)
6 Vector.add_variable("ei", ei, -eo)

Figure 12: Creation of a Vector struct, by giving
it a name and defining variables.

29

1 struct Vector {
2 double e1;
3 double e2;
4 double e3;
5 double eo;
6 double ei;
7 // Constructors , methods, etc ...
8 };

Figure 13: The member variables within the Vec-
tor struct, as an example of how variables map to
struct members.

Creation of a variable requires three arguments:

1. Name: Name of the variable within the
struct.

2. Expression: A symbolic algebra expression
for the variable.

3. Extractor: For a CGA expressionM , taking
the inner product of the expression with the
extractor x (specifically x ·M) will give the
component corresponding to that variable.

For a vector v, the symbolic algebra expression
generated for the vector is:

(v.e1)e1 + (v.e2)e2 + · · ·

where (v.e1) is the reference to the correspond-
ing variable within the struct and e1 is the CGA
vector.

The expression can be freely manipulated, while
maintaining references to the variables within the
struct. This means that the expression returned
is in terms of these variable names.

In addition to simple structs such as the vector,
compound structs are defined, such as the Rotor
which contains a scalar (double) variable s and a
Bivector variable b. With this, the e12 compo-
nent of the rotor R is evaluated with R.b.e12.

Structs also contain information for writing con-
structors and conversions between types.

Operations

Operations are defined by their own classes, such
as GeometricProduct, OuterProduct, etc.

Each operation class provides two functions,
write_individual and write.

The write_individual writes a function for com-
puting the operation between a given operand or
pair of operands. For a binary operation, this has
the form:

1 def write_invididual(self,
2 op1,
3 op2,
4 available ,
5 f_h,
6 f_cpp):
7 # Function body

The function does the following:

• Compute an expression for the result of
applying the operation between the two
operands op1 and op2, such as between a
vector and bivector.

• Find the most compact available struct for
the return type, from available, a list of
structs available as return types.

• Write the function declaration to the header
file f_h.

• Write the function definition to the source
file f_cpp, where each component of the re-
turn object is set using an expression given
by the extractor.

• Write the same operation with the operands
flipped, if they are different operands, such
as a ∧B vs B ∧ a, exploiting commution or
anticommution where possible.

The write function writes operations for all
structs (for unary operations) or all pairs of structs
(for binary operations). There is flexibility in
defining which the pairs for which functions are
computed for. Certain combinations are less use-
ful, so may not be worth generating.

30

Example operation

The inner product between a 3D vector and 3D
bivector will be shown as an example.

The function declaration is:

1 Vector3 inner(const Vector3 &lhs,
2 const Bivector3 &rhs);

where the Vector3 is on the left-hand side, the
Bivector3 on the right-hand side.

Expressions for each struct are equal to:
v = (lhs.e1)e1 + (lhs.e2)e2 + (lhs.e3)e3
B = (rhs.e23)e23 + (rhs.e31)e31 + (rhs.e12)e12

Evaluating a = v ∧B gives the result:
a = [(lhs.e3)(rhs.e31)− (lhs.e2)(rhs.e12)]e1

+[(lhs.e1)(rhs.e12)− (lhs.e3)(rhs.e23)]e2
+[(lhs.e2)(rhs.e23)− (lhs.e1)(rhs.e31)]e3

The most compact struct for this result is the
Vector3 struct.

The expressions for each variable within the re-
turn struct are:

e1 · a = (lhs.e3)(rhs.e31)− (lhs.e2)(rhs.e12)
e2 · a = (lhs.e1)(rhs.e12)− (lhs.e3)(rhs.e23)
e3 · a = (lhs.e2)(rhs.e23)− (lhs.e1)(rhs.e31)

Figure 14 gives the generated function body.

1 Vector3 inner(const Vector3 &lhs,
2 const Bivector3 &rhs)
3 {
4 Vector3 result;
5 result.e1 = lhs.e3*rhs.e31
6 - lhs.e2*rhs.e12;
7 result.e2 = lhs.e1*rhs.e12
8 - lhs.e3*rhs.e23;
9 result.e3 = lhs.e2*rhs.e23

10 - lhs.e1*rhs.e31;
11 return result;
12 }

Figure 14: The function body for the inner prod-
uct between a 3D vector and 3D bivector, showing
how the value of each variable of the return object
is set.

4.1.2 Library source code

The cga.h and cga.cpp source code provides
structs for representing CGA objects and func-
tions for CGA operations, all written by the gen-
erator.

The library also contains header files with inline
functions for a number of other specific operations.

Constants

The constants.h header file contains useful con-
stants. This includes the basis vectors and pseu-
doscalars. Some examples are:

1 static Vector3 e1(1, 0, 0);
2 static Vector eo(0, 0, 0, 1, 0);
3 static Pseudoscalar I5(1);

Geometry

The geometry.h header file contains functions for
creating geometric primitives, intersecting them
and interpreting the results. These function are
primarily used by the delta robot kinematics.

Examples are given here for creating a confor-
mal point (Figure 15) and creating a dual sphere
(Figure 16). The code for intersecting three dual
spheres and interpreting the result is given in Fig-
ure 31 in Appendix B.

1 inline Vector make_point(
2 const Vector3 &x)
3 {
4 Vector result = x;
5 result.eo = 1;
6 result.ei = 0.5*norm2(x);
7 return result;
8 }

Figure 15: C++ function for creating a confor-
mal point for a given position, using eq. (17).

31

1 inline Vector make_dual_sphere(
2 const Vector3& position ,
3 double radius)
4 {
5 Vector result = position;
6 result.eo = 1;
7 result.ei = 0.5*(norm2(position)
8 - radius*radius);
9 return result;

10 }

Figure 16: C++ function for creating a dual
sphere for a given position and radius, using
eq. (19).

Transformations

The transforms.h header file provides functions
for creating translations, rotations and rigid body
transformations. These function are primarily
used by the serial robot kinematics.

For convenience, functions are also provided to ap-
ply the transformations. Figure 17 shows a func-
tion used to transform a vector with an arbitrary
versor using eq. (43).

1 inline Vector transform_vector(
2 const Vector &x, const Versor &T)
3 {
4 return (T*x*reverse(T)).v;
5 }

Figure 17: Function used to transform a vector
using a versor by evaluating TxT̃ . On evaluating
Tx or xT̃ this expands to a non-vector expression,
but the final expression will only contain a vector
component due to the structure of T. Therefore,
only the vector component is returned.

4.2 Kinematics library

The kinematics library was called cbot, for CGA
robotics. The library compiles to produce a dy-
namic library cbot.so, where a compilation flag
is set to choose conventional or CGA implemen-
tations of the kinematics functions, as outlined in
Figure 18.

Figure 18: Overview of how the kinematics li-
brary is structured. Header files are provided in-
dependent of a particular implementation. On
compiling, a compile flag selects source files from
the linalg (for linear algebra, conventional meth-
ods) or cga to select how the kinematics are im-
plemented.

4.2.1 Header files

The header files provide the interface to the li-
brary, primarily in the form of classes for the two
robot types, Delta and Serial.

Data structures for kinematics

Within cbot.h a number of data structures are
defined for kinematics. These are used for argu-
ments and return types from kinematic functions.

The structure and naming of these are chosen to
match those provided by ROS to make conversion
easy.

32

The data structures provided are:

• Pose: Contains position and orientation,
with orientation represented as a quater-
nion.

• Twist: Twist, or spatial velocity, containing
linear and angular velocity.

• Joint: Position and velocity of a single
joint. Also has a dependent flag to indicate
if the joint is independent or dependent.

• Joints: An unordered map of joint name to
joint state, used to represent all joint states
for a robot.

• JointTrajectoryPoint: A single point in
a joint trajectory, containing a list of joint
positions and a time.

• JointTrajectory: A list of joint trajectory
points and a list of joint names.

• TrajectoryConstraints: A data structure
defining maximum speed constraints, taken
into account when interpolating a trajec-
tory.

Robot classes

Also within cbot.h is a base class Robot. The
Delta and Serial classes, in delta.h and
serial.h respectively inherit from this class.

Robot defines the interface for a robot class, by
defining pure virtual functions that child classes
must implement.

The most important of these functions are the fol-
lowing:

• bool update_pose()
Compute the forward kinematics of the
robot, by updating the robot state and end
effector pose from the joint positions.

• bool update_twist()
Compute the instantaneous forward kine-
matics of the robot, by updating the end
effector twist from the joint velocities.

• bool update_joint_positions()
Compute the inverse kinematics of the
robot, by setting the joint positions to give
the desired end effector pose.

• bool update_joint_velocities()
Compute the instantaneous inverse kine-
matics of the robot, by setting the joint ve-
locities to give the desired end effector twist.

• bool calculate_trajectory(const Pose
&goal)
Calculate and store the joint trajectory to
travel from the current robot state to the
goal pose.

• bool update_dependent_joints()
Calculate the dependent joint positions.

All functions return a bool to indicate whether
the calculation was successful.

The robot class itself will store the robot state,
including joint states, end effector pose and twist
and the calculated trajectory. Other function are
provided for writing and reading these.

The Delta and Serial classes are similar to the
base class. However, they also define some extra
data structures for specifying the dimensions of
the robot.

Joints are referenced by name, such that they can
be looked up in the Joints data structure. Since
an unordered map is used (implemented using a
hash table in C++), lookup is fast.

Figure 19 shows how a delta robot object is cre-
ated and the forward kinematics is solved, includ-
ing finding the dependent joint positions and read-
ing the solution.

33

1 cbot::Delta::Dimensions dim;
2 dim.r_base = 0.15;
3 // Set other dimensions ...
4

5 cbot::Delta::JointNames joint_names;
6 joint_names.theta.push_back("theta1");
7 // ...
8 joint_names.alpha.push_back("alpha1");
9 // ...

10

11 cbot::Delta delta(dim, joint_names);
12 delta.set_joint_position("theta1", 0.3);
13 delta.set_joint_position("theta2", -0.1);
14 delta.set_joint_position("theta3", 0.7);
15

16 if (!delta.update_pose()) {
17 return 1; // Failed, exit
18 }
19

20 // Read result of forward kinematics
21 cbot::Pose pose = delta.get_pose();
22

23 if (!delta.update_dependent_joints()) {
24 return 1; // Failed, exit
25 }
26

27 // Read dependent joint values
28 double alpha1 =
29 delta.get_joint_position("alpha1");
30 // ...

Figure 19: Code used to create a delta robot ob-
ject, set the joint positions, perform forward kine-
matics and read the result.

4.2.2 Conventional implementations

Implementations of the ksinematics func-
tions are defined in linalg/delta.cpp and
linalg/serial.cpp.

The Eigen library is used to perform linear alge-
bra, both for kinematics and other operations such
as computing the SVD.

Delta robot kinematics

The forward and inverse kinematics are calculated
using Section 3.1.1 and Section 3.1.2, using the se-
ries of calculations outlined.

Instantaneous forward and inverse kinematics use
the Jacobian, which once the forward kinemat-
ics has been calculated, is calculated using Sec-

tion 3.1.5.

Serial robot kinematics

For the forward kinematics, the transform for each
joint is first calculated, then concatenated to give
the end effector transform as in Section 3.3.1,
shown in Figure 32 in Appendix B.

On the other hand, inverse kinematics uses New-
ton’s method, as outlined in Section 3.3.3. The
core part of this function is shown in Figure 20,
which makes use of a function for calculating the
approximate twist to reach the goal transform and
a function for checking when the twist is close
enough to zero (by it’s norm).

1 // ee_transform is the current end
effector transform and

2 // goal_transform is the supplied goal
transform

3 while (i < max_iter) {
4 update_pose();
5 twist = get_twist_coord_change(
6 ee_transform , goal_transform);
7 if (twist_is_zero(norm)) break;
8

9 update_jacobian();
10 j_svd.compute(J, flags);
11

12 delta_q = j_svd.solve(twist);
13 // Add delta_q to joint positions ...
14

15 i++;
16 }

Figure 20: Code for the inverse kinematics of the
serial robot using conventional methods or CGA.
Performs forward kinematics to update the pose.
Calculates the approximate twist to reach the end
effector. Adds to the joint positions appropri-
ately. Stops when the twist norm falls below a
threshold. The difference between conventional
and CGA implementations is the variable types
and the get_twist_coord_change(...) and
twist_is_zero(...) functions.

The instantaneous forward and inverse kinematics
uses the Jacobian found using Section 3.3.2.

34

4.2.3 CGA implementations

Implementations of the kinematics functions are
defined in cga/delta.cpp and cga/serial.cpp.

The cga library is used for CGA operations to im-
plement kinematics, but Eigen is still used for the
SVD and related operations.

Delta robot kinematics

The delta robot implementations makes use of ge-
ometry functions provided by the CGA library.
Forward kinematics follows Section 3.1.3 and in-
verse kinematics follows Section 3.1.4.

The code for the forward kinematics is much sim-
pler than the conventional function and is shown
in Figure 33 in Appendix B.

The Jacobian is found the same was as conven-
tionally, following Section 3.1.5.

Serial robot kinematics

Forward kinematics is applied the same was
as conventionally, first creating versors for each
joint, then multiplying together, as shown in Sec-
tion 3.3.1. The code is identical to that given in
Figure 32 but with versors for transforms and a
different get_dh_transform(...) function.

Similarly, the inverse kinematics when us-
ing CGA follows Section 3.5.3 and the im-
plementation is identical to Figure 20 ex-
cept using different variable types. The
functions get_twist_coord_change(...) and
twist_is_zero(...) are what change.

The Jacobian is found using Section 3.5.2, trans-
forming the spatial velocity from each joint to the
end effector. However, unlike conventional meth-
ods, it doesn’t need to calculate spatial velocity
transforms to use and instead re-uses the joint
transforms.

35

4.3 ROS package

Figure 21 and Figure 22 show an overview of the nodes and topics used to control the delta and serial
robots. Both robots use similar architectures except that the delta robot is parallel and therefore a node
is needed to perform the forward kinematics to completely define the joint positions, fully defining the
robot state for visualisation.

This section will look at the different components in more detail.

Figure 21: Graph of the nodes and topics used to control the delta robot and visualise its state.
Non-ROS components are highlighted in green and custom nodes are highlighted in blue.

Figure 22: Graph of the nodes and topics used to control the serial robot and visualise its state.
Non-ROS components are highlighted in green and custom nodes are highlighted in blue.

36

4.3.1 Modelling

The first step is to specify a description of the
robot model for visualisation and forward kine-
matics. This is done by creating URDF files for the
delta and serial robot, standing for Unified Robot
Description Format. These files have an XML for-
mat, containing elements defining links, joints and
some other details.

The problem encountered with the delta robot is
that URDF files do not support parallel robots. The
kinematic structure must form a tree. The solu-
tion is to remove joints which close the loop and
manually set these in order to close the loop.Fig-
ure 23 shows the robot model for the delta robot
with and without correct dependent joints set.

Figure 23: Screenshot of the URDF model of the
delta robot, visualised in rviz. On the left, the
dependent joints have been set correctly using for-
ward kinematics, while on the right they have been
left at arbitrary values.

4.3.2 Control of simulation and hardware

The gzserver node within the gazebo_ros pack-
age is responsible for running the robot simula-
tions. It provides topics for writing joint com-
mands and reading joint states. Similarly, for ac-
tual hardware, a custom hardware interface node
is written, providing the same topics.

To standardise the topics, the ros_control pack-
age is used to organise joint control. For
both robots, two controllers are created, one
for the main joints that set the end effec-
tor pose, called theta_controller and one for
the gripper joint called gripper_controller.

Commands are written to the joints under the
theta_controller/command topic for example,
specifying all joint position targets. Another con-
troller called the joint_state_controller is cre-
ated for providing feedback of the joint states un-
der the joint_states topic.

4.3.3 Commander node

The commander node is responsible for process-
ing the joy topic from the joy_node node, which
provides input from a gamepad such as an Xbox
controller.

Two modes of control are implemented: manual
and automatic.

Manual control

The gamepad inputs are used to set the linear
and angular velocity of the end effector. For
the delta robot, angular velocity is ignored. A
ee_twist_cmd topic is published, which the robot
controller then executes.

This also includes manual control of the gripper
joint.

When in manual control mode, the A button is
used to store the current pose, while the X button
is used to store the current gripper angle. These
will be used in automatic control.

Automatic control

Whenever the current pose or gripper angle is
saved, this creates a task and places it on a task
queue.

When the Y button is pressed, the commander
switches into an automatic control mode. It will
then execute the saved tasks automatically. For
a pose task it will automatically move from the
current pose to the saved goal pose. For a gripper
task it will automatically move from the current
gripper angle to the saved goal gripper angle.

The commander doesn’t execute these tasks itself.
Instead, it communicates with the controller node
via action servers in order to initiate the tasks and

37

monitor their progress. The two action servers
provided are called trajectory and gripper for
pose trajectory tasks and gripper tasks.

4.3.4 Controller

The two controller nodes, delta_controller and
serial_controller both use the same code.
They differ in which robot class is used, either
Delta or Serial.

The controller uses the
robot.update_joint_positions() function to
perform instantaneous inverse kinematics. This
finds the joint velocities required to execute the
desired end effector twist, which is received over
the ee_twist_cmd topic. This is then executed
simply by integrating the joint positions on a loop.

The controller also starts a trajectory
server. When the commander sends a re-
quest, it switches to trajectory mode. The
robot.calculate_trajectory(goal) function
calculates the trajectory to the requested pose
from the current state, making use of inverse kine-
matics to calculate the required joint positions at
each step of the trajectory. The controller then
reads the joint positions off the trajectory over
time, until the end of the trajectory is reached.

4.3.5 State publisher and visualisation

The two state publisher nodes,
delta_state_publisher and
serial_state_publisher also use similar code,
using the Delta or Serial robot classes.

Both use robot.update_pose() to determine the
current end effector pose. This is set by listen-
ing to the joint_states topic which provides the
joint positions. The pose is published as ee_pose
and to be displayed in rviz.

The delta robot is parallel, so must also use
forward kinematics to determine the dependent
joint positions. The delta robot also has the
delta.update_dependent_joints() function to
do this. The complete set of joint states is pub-

lished as the joint_states_complete topic.

The rviz program can display the robot model
and markers for expected pose and twist. To dis-
play the model, rviz must know the robot struc-
ture (using a provided URDF file) and know the
transforms of link, provided under the tf topic.

The link transforms (poses) could have been man-
ually calculated by the robot classes themselves.
However, it seemed more sensible to make use of
the robot_state_publisher node which will cal-
culate the transforms.

This also makes it easier to validate that the for-
ward kinematics is accurate, by checking that the
end effector pose marker matches the position and
orientation of the end effector on the robot model.

38

5 Results

5.1 Execution times for kinematics
functions

Figure 24: Histogram of execution times for per-
forming the forward and inverse kinematics of the
delta robot with conventional or CGA methods.

Figure 25: Histogram of execution times for per-
forming the forward kinematics of the serial robot
with conventional or CGA methods.

Figure 26: Histogram of execution times for per-
forming the inverse kinematics of the serial robot
with conventional or CGA methods.

5.2 Control tasks

Videos are available for all tasks mentioned here,
available at:
https://www.youtube.com/playlist?list=
PLHSZpbJPMrmbw1spEI9z1c3tPFYf5xKDF

In all cases, CGA was used for the kinematics and
rviz was open to visualise the robot state along-
side the simulation or hardware. The red arrow
shown in rviz indicates the end effector pose es-
timate from the state publisher, offset to lie in the
centre of the gripper.

5.2.1 Delta robot

The delta robot could be manually controlled in
simulation and with hardware.

For the simulated robot, it was able to automat-
ically move an object from one place to another,
shown in Figure 27. It was occasionally unsuc-
cessful due to slip between the gripper and cube.

39

https://www.youtube.com/playlist?list=PLHSZpbJPMrmbw1spEI9z1c3tPFYf5xKDF
https://www.youtube.com/playlist?list=PLHSZpbJPMrmbw1spEI9z1c3tPFYf5xKDF

Figure 27: Screenshot of the simulated delta
robot automatically moving a cube from one po-
sition to another.

The real delta robot was able to automatically
move between saved positions, shown in Figure 28,
although there was insufficient time to setup the
gripper control.

The motion was slightly jittery due to us-
ing quickly written firmware, but could made
smoother with more time (eg: using micro-
stepping on stepper motors).

Figure 28: Photo of the real delta robot auto-
matically moving between saved positions.

5.2.2 Serial robot

Likewise, manual control worked well with the se-
rial robot, both in simulation and with hardware.

For the simulated robot, it was able to be com-
manded to stack two objects on top of one an-
other, shown in Figure 29. Again, issues occurred
when there was slip between the cube and gripper,

but other than that, it was able to reproduce the
desired behaviour accurately.

Figure 29: Screenshot of the simulated serial
robot automatically stacking cubes.

The real robot was first commanded to move an
object from one position to another. Following
this, it was able to be setup to automatically stack
three objects, shown in Figure 30, after carefully
planning it’s motion.

The main issue encountered with the real serial
robot was the limited accuracy inherent in a low-
cost robot kit like this, but it was sufficient for
this project.

Figure 30: Photo of the real serial robot auto-
matically stacking a number of objects.

40

6 Discussion

6.1 Using CGA to solve delta robot
kinematics

Execution times

For the delta robot, execution times were longer
for the forward and inverse kinematics, as shown
in Figure 24. The inverse kinematics was particu-
larly slower since the standard algebraic solution
was simple, such that using intersection of geo-
metric primitives gave an unnecessary overhead.

However, because solutions are found analytically,
execution times are still consistently small, mak-
ing it irrelevant that CGA is slower if it is still
sufficiently fast.

Advantages and disadvantages of CGA

The advantage of using CGA is that for someone
who understands CGA, writing code to perform
geometric operations becomes much easier. The
conventional solution required an explicit param-
eterisation of the spheres and it was easy to make
a mistake when solving or implementing.

The only disadvantage is the increased execution
time and the less intuitive method for someone un-
familiar with CGA. However, a carefully designed
library eliminates this issue, especially if functions
are available for interpreting all intermediate in-
tersection results, such as circles, removing the
need for a library user to understand CGA.

6.2 Using CGA to solve serial
robot kinematics

Execution times

Like with the delta robot kinematics, because the
forward kinematics of the serial robot had a closed
form solution, execution times were consistently
small, shown in Figure 25. Again, CGA gave
slightly larger execution times, but was still suffi-
ciently fast.

The inverse kinematics of the serial robot differs to
previous functions in that it is solved numerically.
Previous functions were of the order of microsec-
onds, while the serial robot inverse kinematics is
of the order of 100s of microseconds, as shown in
Figure 26.

Execution time is primarily determined by how
many steps are required to converge, although
CGA execution times tended by be longer, indi-
cating a longer time per step. However, the per-
formance of both implementations mostly depends
on how close the initial joint positions are to the
solution and what accuracy is required.

For example, this implementation used a thresh-
old of 1µm and 10−6 radians to threshold the error
in linear and angular displacement. Due to the so-
lution converging asymptotically if this accuracy
could be smaller, the execution times would be
significantly smaller.

Additionally, in this application, inverse kinemat-
ics is only used for points along a trajectory. In
every case, the step from current to goal pose is
very small, meaning inverse kinematics can be per-
formed very quickly.

Advantages and disadvantages of CGA

The two methods are very similar, only differing
in how pose and twist are represented. However,
the advantage of CGA is that it is more consis-
tent. Rigid body transformations, twist, orienta-
tion are all represented within the same algebra.
This makes writing code simpler.

On the other hand, conventional methods requires
a range of objects: joint transformations as ho-
mogeneous matrices, spatial velocity transforma-
tions as 6×6matrices, orientations as quaternions.
Conversions are often required between these dif-
ferent objects.

In addition to the increased execution times, a dis-
advantage of CGA is that it still requires the use of
linear algebra for defining and using the Jacobian,
requiring some conversions.

41

6.3 Task performance

All videos recorded of the robot performing tasks
used the CGA implementations of the kinematics
functions.

As shown, the delta and serial robots were both
able to be manually controlled and accurately per-
form the planned tasks. Any limitations were
down to limitations in simulation or hardware, not
CGA as a method for kinematics.

6.4 Improvements to CGA library

Although the CGA library performs well, there is
room for a few improvements.

Firstly, functions could be generated for special
operations such as the versor product V xṼ . When
the versor V has a particular structure, this ex-
pression will always return an object of the same
grade as the argument x. When evaluating it via
two geometric products, the geometric products
have no concept of this, so calculate all compo-
nents. The final result will always have most of it’s
components be non-zero, making the full interme-
diate calculations inefficient. This would make the
serial robot inverse kinematics significantly faster.

Secondly, the code generator generates a large
number of data structures and functions between
them, which bloats the library. This doesn’t affect
execution times and is not a problem if running on
a modern computer. However, if CGA was to be
used for kinematics on embedded devices, which
have more limited memory, this is a lot of wasted
program memory. Instead, the generator could
be configured to only generate the necessary data
structures and functions. For example, for a se-
rial robot, it may only need rotors, versors, vectors
and bivectors.

6.5 Improvements to other code

For the robotics library, providing two possible im-
plementations added a fair bit of complexity and
duplication of code. If taking the project further,
it may make more sense to focus on CGA and only
use this.

The control code could be taken further by us-
ing planning methods such as RRT*, allowing the
robot to plan trajectories under a larger number
of constraints, where it can’t simply interpolate a
straight path. This could take into account joint
limits, self-collisions and collisions with the envi-
ronment. Additionally a cost function could be
used to search for minimum energy paths.

6.6 Further applications of CGA

The kinematics library could be extended to sup-
port a number of other robot topologies such as
the steward platform and agile eye, with kinemat-
ics implemented with CGA.

CGA can also be used for geometrical control
tasks, such as constraining the end effector to
move about the surface of a sphere.

Finally, since CGA can be used for computer vi-
sion, this could be integrated with control tasks.
An example is visual servoing where a camera
views the workspace of a manipulator and pro-
vides feedback to the controller of the distance
between the end effector and a target objective,
such as when trying to pick up an object.

42

7 Conclusion

CGA was shown to be a viable alternative to con-
ventional methods for performing kinematics op-
erations and was able to be applied to the practical
control of robots:

• The execution times when using CGA to
solving kinematics problems was longer than
when using conventional methods, but still
sufficiently fast. This could be improved by
further optimising the code.

• For someone familiar with CGA, writing
code to solve kinematics tends to be sim-
pler due to simple geometric operations and
the use of a consistent algebra.

• Practical usage was demonstrated by using
CGA for kinematics functions in the control
of a delta and serial robot. Both were able
to be manually controlled and setup to au-
tomatically perform manipulation tasks.

Further work could investigate the kinematics of
other types of robot, such as the agile eye; use
CGA for more specialised control tasks such as
constraining motion about the surface of a sphere;
or integrating computer vision into control, such
as with visual servoing, which can also use CGA.

References
[1] Diagram of a serial robot. Available at:

https://orocos.org/kdl_old
(Accessed: 31 May 2021)

[2] Diagram of a delta robot. Available at:
http://www.multibody.net/teaching/msms/
students-projects-2019-2/delta-robot/
attachment/1-20/
(Acdessed: 31 May 2021)

[3] Wareham R., Cameron J., Lasenby J. (2005)
Applications of Conformal Geometric Algebra in
Computer Vision and Graphics
In: Li H., Olver P.J., Sommer G. (eds) Computer
Algebra and Geometric Algebra with Applications.
IWMM 2004, GIAE 2004. Lecture Notes in Computer
Science, vol 3519. Springer, Berlin, Heidelberg.

[4] ROS (2020) Available at:
https://www.ros.org/
(Accessed: 31 May 2021)

[5] Hadfield H., Wei L., Lasenby J. (2020)
The forward and inverse kinematics of a delta robot
In: Magnenat-Thalmann N. et al. (eds) Advances in
Computer Graphics. CGI 2020. Lecture Notes in Com-
puter Science, vol 12221. Springer, Cham.

[6] Unity game engine (2020) Available at:
https://unity.com/
(Accessed: 31 May 2021)

[7] Hestenes D., Sobczyk G. (1987)
Clifford Algebra to Geometric Calculus, a Unified Lan-
guage for Mathematics and Physics

[8] Lasenby A., Lasenby J., Wareham R. (2004)
A covariant approach to geometry using geometric al-
gebra

[9] Siciliano B., Khatib O. (2016)
Springer handbook of robotics, 2nd edition
Chapter 2

[10] Siciliano B., Sciavicco L., Villani L., Oriolo G. (2008)
Robotics - Modelling, Planning and Control
Chapter 4

[11] Gazebo (2020) Available at:
http://gazebosim.org/
(Accessed: 31 May 2021)

43

https://orocos.org/kdl_old
http://www.multibody.net/teaching/msms/students-projects-2019-2/delta-robot/attachment/1-20/
http://www.multibody.net/teaching/msms/students-projects-2019-2/delta-robot/attachment/1-20/
http://www.multibody.net/teaching/msms/students-projects-2019-2/delta-robot/attachment/1-20/
https://www.ros.org/
https://unity.com/
http://gazebosim.org/

A Additional theory

Expression for a rigid body transformation using DH parameters

Expressions are provided for a homogeneous matrix and a CGA versor. In both cases, the result can be
calculated more easily by multiplying the translation and rotation operators (as is done in this project),
but the following expressions could be evaluated directly for better efficiency.

For conventional methods, the homogeneous matrix is:

i−1Ti = TransX(ai−1)RotX(αi−1)TransZ(di)RotZ(θi)

=

1 0 0 ai−1

0 cosαi−1 − sinαi−1 0
0 sinαi−1 cosαi−1 0
0 0 0 1

cos θi − sin θi 0 0
sin θi cos θi 0 0
0 0 1 di
0 0 0 1

=

cos θi − sin θi 0 ai

cosαi−1 sin θi cosαi−1 cos θi − sinαi−1 −di sinαi−1

sinαi−1 sin θi sinαi−1 cos θi cosαi−1 di cosαi−1

0 0 0 1

For CGA methods, the versor is:

i−1Ti = TransX(ai−1)RotX(αi−1)TransZ(d)RotZ(θi)

=

[
cos
(αi−1

2

)
− 1

2
e23 sin

(αi−1

2

)
+

1

2
n∞e1ai−1 cos

(αi−1

2

)
− 1

2
n∞e123ai−1 sin

(αi−1

2

)]
[
cos

(
θi
2

)
− 1

2
e12 sin

(
θi
2

)
+

1

2
n∞e3di cos

(
θi
2

)
− 1

2
n∞e123di sin

(
θi
2

)]
= cos

(αi−1

2

)
cos

(
θi
2

)
− e23

[
sin
(αi−1

2

)
cos

(
θi
2

)]
+ e31

[
sin
(αi−1

2

)
sin

(
θi
2

)]
− e12

[
cos
(αi−1

2

)
sin

(
θi
2

)]
+

1

2
n∞e1

[
ai−1 cos

(αi−1

2

)
cos

(
θi
2

)
− di sin

(αi−1

2

)
sin

(
θi
2

)]
− 1

2
n∞e2

[
ai−1 cos

(αi−1

2

)
sin

(
θi
2

)
+ di sin

(αi−1

2

)
cos

(
θi
2

)]
+

1

2
n∞e3

[
di cos

(αi−1

2

)
cos

(
θi
2

)
− di−1 sin

(αi−1

2

)
sin

(
θi
2

)]
− 1

2
n∞e123

[
ai−1 sin

(αi−1

2

)
cos

(
θi
2

)
+ di cos

(αi−1

2

)
sin

(
θi
2

)]

44

Extracting the position and orientation from a rigid body transformation versor

A point at the origin isn’t affected by the rotation, so:

P = Tn0T̃ p =
(P · e1)e1 + (P · e2)e2 + (P · e3)e3

−P · n∞

Then construct the corresponding translation and extract the rotor, since T = RtR:

Rt = 1 +
1

2
n∞p R = R̃tT

B Larger pieces of code

1 inline PointPair intersect(
2 const Vector spheres[3])
3 {
4 PointPair intersection;
5 cga::Bivector T = dual(outer(spheres[0], outer(spheres[1], spheres[2]))
6);
7

8 if (inner(T, T) < 0) {
9 intersection.valid = false;

10 } else {
11 intersection.valid = true;
12 cga::Rotor P(1, T/std::sqrt(inner(T, T)));
13 cga::Vector Y = transform_vector(inner(T, cga::ei), P);
14 intersection.point1 = describe(Y).point.position;
15 Y = transform_vector(inner(T, cga::ei), reverse(P));
16 intersection.point2 = describe(Y).point.position;
17 }
18 return intersection;
19 }

Figure 31: A C++ function used to intersect three spheres and interpret the result using Section 2.3.7,
returning a PointPair object that contains the two intersections and a valid flag.

1 for (std::size_t i = 0; i < joints.size(); i++) {
2 dim.dh_parameters[i].set_q(joints[joint_names[i]].position);
3 transforms[i] = get_dh_transform(dim.dh_parameters[i]);
4 }
5

6 ee_transform = transforms[0];
7 for (std::size_t i = 1; i < joints.size(); i++) {
8 ee_transform = ee_transform * transforms[i];
9 }

Figure 32: The C++ code for the forward kinematics of the serial robot using either conventional
methods or CGA. The two implementations differ in the variable used for the transforms and the
get_dh_transform(...) function.

45

1 // Member variables
2 bool Delta::update_pose()
3 {
4 // Member variables set:
5 // cga::Vector3 d[3];
6 // cga::Vector3 x;
7

8 cga::Vector D_sphere[3];
9 double theta_i;

10 for (int i = 0; i < 3; i++) {
11 // Get joint position
12 theta_i = joints.at(joint_names.theta[i]).position;
13 // Define position of pseuo-elbow
14 d[i] = u[i] * (dim.r_base + dim.l_upper * std::cos(theta_i) - dim.r_ee)
15 - cga::e3 * (dim.l_upper*std::sin(theta_i));
16 // Create dual sphere
17 D_sphere[i] = cga::make_dual_sphere(d[i], dim.l_lower);
18 }
19 auto result = cga::intersect(D_sphere);
20 if (!result.valid) return false;
21

22 x = (result.point1.e3 < result.point2.e3 ? result.point1 : result.point2);
23

24 // Update the pose member variable , which is returned
25 // by the get_pose() function.
26 // ...
27 }

Figure 33: Code used to perform the forward kinematics of the delta robot using CGA. It creates points
for the three pseudo-elbow positions, forms dual spheres, intersects them and selects the appropriate
point.

C Code repositories

Repository for the CGA and CGA robotics libraries:
https://github.com/zachlambert/cga-robotics

Repository for the ROS package:
https://github.com/zachlambert/cga-robotics-ros

Repository for the custom firmware used on the delta robot:
https://github.com/zachlambert/delta-x-custom-firmware

46

https://github.com/zachlambert/cga-robotics
https://github.com/zachlambert/cga-robotics-ros
https://github.com/zachlambert/delta-x-custom-firmware

D Hardware

Figure 34 shows a photo of the delta robot kit used. It uses three stepper motors, driven by a RepRap
stepper controller (commonly used in 3D printers) and controlled by an Arduino mega. This allowed
for custom firmware to be written to the device.

Figure 34: Photo of the assembled delta robot kit with a gripper attached.

Figure 35 shows the serial robot kit used and the electronics required to control it. The serial robot
didn’t come with a controller, so instead a USB serial controller, was used to drive the 8 servos (using
two servos for joint 2). A switching power regulator was used to supply the 5V to the servos, connected
with a piece of strip board to ensure it could support the current required.

Figure 35: Photo of the assembled serial robot kit (left), USB servo controller (centre) and power
supply(right).

47

Delta robot https://store.deltaxrobot.com/products/delta-x-basic-kit
Arduino board https://store.arduino.cc/arduino-mega-2560-rev3
Serial robot https://www.vvdoit.com/SZDOIT-8DOF-Metal-Robotic-Arm-8-Axis-

Mechanical-Arm-With-Gripper-Kit-ABB-Industrial-Robot-Model-360-
degree-Rotating-Base-Motors-p2755804.html

USB servo controller https://www.pololu.com/product/1352

E Covid-19 disruption

Covid-19 prevented testing with the delta robot kit during Lent term, leaving just a few days in Easter
to get some code working. However, this didn’t affect the majority of the project since a delta robot
simulation could be used. Using simulations was the contingency plan, so this worked well.

Final word count = 11,985, including headers, captions and appendices, excluding technical abstract.

48

https://store.deltaxrobot.com/products/delta-x-basic-kit
https://store.arduino.cc/arduino-mega-2560-rev3
https://www.vvdoit.com/SZDOIT-8DOF-Metal-Robotic-Arm-8-Axis-
Mechanical-Arm-With-Gripper-Kit-ABB-Industrial-Robot-Model-360-
degree-Rotating-Base-Motors-p2755804.html
https://www.pololu.com/product/1352

	Introduction
	Serial robots
	Parallel robots
	Motivation
	Project objectives

	Geometric algebra (GA)
	Overview of GA
	Vectors and planes
	The outer product, blades and multivectors
	The inner product
	The geometric product
	Canonical basis of geometric algebra
	The geometric product between multivectors
	Generalising the inner and outer product
	Pseudoscalar and duality
	Reverse
	Norm

	Using GA for geometric operations
	Projection
	Reflections
	Rotations

	Conformal geometric algebra (CGA)
	Foundation of CGA
	Normalised conformal vectors and inverse mapping
	Interpreting vectors in CGA
	Forming geometric primitives by intersection
	Dual and direct geometric primitives
	Intersecting direct geometric primitives with the meet operator
	Interpreting intersection results

	Kinematics
	Delta robot
	Forward kinematics with conventional methods
	Inverse kinematics with conventional methods
	Forward kinematics with CGA
	Inverse kinematics with CGA
	Jacobian
	Dependent joints

	Representing rigid bodytransformations conventionally
	Rotations
	Rigid body transformations

	Serial robot kinematics using conventional methods
	Forward kinematics
	Spatial velocity and the Jacobian
	Inverse kinematics

	Representing rigid body transformations using CGA
	Rotations
	Rigid body transformations
	Velocity with CGA

	Serial robot kinematics using CGA
	Forward kinematics
	Spatial velocity and the Jacobian
	Inverse kinematics

	Control
	Manual control
	Interpolating trajectories

	Code
	CGA library
	Code generator
	Library source code

	Kinematics library
	Header files
	Conventional implementations
	CGA implementations

	ROS package
	Modelling
	Control of simulation and hardware
	Commander node
	Controller
	State publisher and visualisation

	Results
	Execution times for kinematics functions
	Control tasks
	Delta robot
	Serial robot

	Discussion
	Using CGA to solve delta robot kinematics
	Using CGA to solve serial robot kinematics
	Task performance
	Improvements to CGA library
	Improvements to other code
	Further applications of CGA

	Conclusion
	Additional theory
	Larger pieces of code
	Code repositories
	Hardware
	Covid-19 disruption

