
Mobile Robot Systems
Assignment 2

Zach Lambert Pembroke College March 2021

1 Potential Field Method

1.1 Exercise 1

(1a) Implementing a velocity field to reach a
goal

The purpose of the potential field for the goal is to
drive the trajectory towards the goal, so is an at-
tractive potential field. For a goal xg, a sensible
potential field is:

Ua(x) =
1

2
|x− xg|2

The velocity field v(x) should point down the gradi-
ent of the potential field, giving:

Va(x) = −∇Ua(x) = xg − x

hence the velocity field always points towards the
goal and decreases in magnitude as the trajectory
approaches the goal.

Figure 1: Trajectory returned using the potential
field method with only an attractive field towards
the goal.

Figure 1 shows the resultant trajectory, which moves
in a straight line to the goal, ignoring the obstacle
since this isn’t taken into account in the velocity field
yet.

(1b) Implementing a velocity field to avoid
obstacles

The potential field for obstacles should be repulsive.
The velocity field should always point away from the
obstacles, where the magnitude tends to a maximum
as the distance to an obstacle decreases to zero.

The potential function Ur(x) is a sum of all the re-
pulsive potential functions from each obstacle:

Ur(x) =
N∑
i=1

Ur,i(x)

where an obstacle of position xi and radius ri has
the potential function:

Ur,i(x) =

{
Umax exp

(
− |x−x0|−ri

λ

)
|x− xi| ≥ ri

Umax |x− x0| < ri

where λ defines the scale of the potential field around
the obstacle. An increase in distance λ ln 2 will halve
the value of the potential field.

Differentiating gives the velocity field:

Vr,i(x) = −∇Ur,i(x)

=

{
Vmax

x−xi

|x−xi| exp
(
− |x−x0|−ri

λ

)
|x− xi| > ri

0 |x− xi| < ri

where Vmax = Umax
2λ

.

Therefore, the velocity field always points away from
obstacle with maximum velocity Vmax at the obsta-
cle, which decays in magnitude as the distance to
the obstacle increases.

These combine to give the total repulsive velocity
field:

Vr(x) =
N∑
i=1

Vr,i(x)

1

This velocity field should always overcome the at-
tractive velocity field towards the goal when the
robot is right next to the obstacle, at the very least.
Therefore:

Vmax > max
x

(|xg − x|)

A factor of 2 larger was found to work well.

Figure 2: Velocity field and resultant trajectory with
only the repulsive velocity field for avoiding obsta-
cles.

Figure 2 shows the repulsive velocity field, which as
expected, drives the trajectory away from the obsta-
cles.

(1c) Combining the two fields

Combining the two fields gives the final velocity field:

V (x) = Va(x) + Vr(x)

Figure 3: Combined velocity field and the resultant
trajectory.

Figure 3 shows the velocity field and trajectory when
combining the two velocity fields. The trajectory ini-
tially heads towards the goal in a straight line, but
as it approaches the obstacle, the repulsive field from
the obstacle pushes it away. This curves the trajec-
tory around the obstacle.

(1d) Placing an obstacle at [0, 0]

When an obstacle is at [0, 0], this creates a saddle
point in the potential field in front of the obstacle.
In this case, the start and end goal are in a straight
line along the axis of the saddle point, so along this
line, the trajectory enters a local minima, while it’s
at a local maxima along the perpendicular axis.

To avoid this, the trajectory simply needs to be per-
turbed slightly from the local maxima. This can be
done by adding a small amount of noise to the ve-
locity field.

2

(1e) Implementing the solution to the prob-
lem in (1d)

Figure 4: Trajectory when an obstacle is at [0, 0],
but with the issue in (1d) resolved by adding random
noise to the velocity field.

A small amount of random Gaussian noise was added
to the attractive velocity field, which perturbed the
trajectory from the local maxima of the saddle point,
allowing it to move around the obstacle, as shown in
Figure 4

(1f) Adjusting solution to handle local min-
ima

When two obstacle are placed near each other, a lo-
cal minima is created between them. The solution
from (1e) only handles saddle points, whereas local
minima are a different problem.

The most robust solution to this problem is to com-
bine gradient descent search and a random walk
when local minima are encountered.[1]

This is implemented by having two operating modes:
best first search (gradient descent) and random walk.

1. In best first mode, the trajectory follows gradi-
ent descent. When it reaches a local minima,
characterised by a small velocity magnitude
and distance to the goal exceeding a thresh-
old, it will enter random walk mode.

2. In random walk mode, the trajectory randomly
updates. When the trajectory moves back

down the potential field, characterised by the
current step having a positive component in
the direction of the velocity field, it will return
to best first mode.

Instead of using independent steps in random walk
mode, a markov process was used. At each step, the
trajectory would move with velocity:

V [t] = Vmax(cos θ[t]i+ sin θ[t]j)

and update the direction with Gaussian noise of
standard deviation π:

θ[t+ dt] ∼ N (θ[t], π)

Figure 5: Trajectory returned when using the ran-
dom walk method to escape local minima.

Figure 5 shows the trajectory returned by the ran-
dom walk method, which becomes convoluted when
trying to escape a local minima. To fix this, the fi-
nal trajectory can be simplified by finding a subset
of points along the trajectory that remain collision
free between them.

3

Figure 6: Algorithm used to simplify a trajectory.

Figure 6 shows the algorithm used to simplify the
trajectory. In each iteration, it finds the next col-
lision free segment from the original trajectory and
adds this to the simplified trajectory. Following this,
it back-tracks along the simplified trajectory to re-
duce the trajectory further. This continues until it
reaches the end of the trajectory. This won’t give
the optimal trajectory, but gives a reasonable sim-
plification and will remove the noise introduced by
the random walk.

Figure 7: Trajectory returned using the random
walk method to escape local minima after simplifi-
cation.

Figure 7 shows the resultant trajectory after simpli-
fication. This escapes the local minima and gives a
more optimal trajectory.

1.2 Exercise 2

(2a) Equations for feedback linearisation of a
differential drive

For a robot at position x with orientation θ, the po-
sition xp of a point P a distance ε in front is given
by:

xp = x+ ε

[
cos θ
sin θ

]
Differentiating gives the velocity of the point:

ẋp = ẋ+ εθ̇

[
− sin θ
cos θ

]
= u

[
cos θ
sin θ

]
+ εω

[
− sin θ
cos θ

]
=

[
cos θ −ε sin θ
sin θ ε cos θ

] [
u
ω

]

This gives the forward kinematics equation:

ẋp = J(x)u

with control vector u =
[
u ω

]T .
(2b) The utility of feedback linearisation

With feedback linearisation, the control of the non-
holonomic robot is implemented by control of the
holonomic point P. By inverting the forward kine-
matics equation, this gives the inverse kinematics
equation:

u = J(x)−1ẋp[
u
ω

]
=

[
cos θ sin θ

−1
ε
sin θ 1

ε
cos θ

] [
ẋp

ẏp

]

which depends on θ, defined by the differential equa-
tion θ̇ = ω.

4

(2c) Implementing the feedback_linearized
function

Figure 8: Trajectory followed by robot in Gazebo,
following the velocity field from exercise 1.

Figure 8 shows the trajectory followed by the robot
in Gazebo. It follows the velocity field from exer-
cise 1, which combines the attractive field towards
the goal and the repulsive field away from obstacles.
This gives the desired velocity of the holonomic point
P, set by u and ω using the inverse kinematics equa-
tion.

(2d) Adjusting the implementation to use rel-
ative pose

The robot has an absolute pose defined in the world
frame, with absolute position x and orientation θ.

For an arbitrary point Q, this has an absolute po-
sition xQ in the world frame. This position can be
expressed in the robot frame R, denoted RxQ, with
the transformation:

RxQ = R(θ)T (xQ − x)

where R(θ) is the standard rotation matrix, rotating
a vector θ radians counter-clockwise.

When all positions are expressed in the robot frame,
the feedback linearisation simplifies to:

u = ẋp ω =
1

ε
ẏp

2 Rapidly-Exploring Random
Trees

2.1 Exercise 3

(3a) Implementing the sample_random_po-
sition function

Sample a position uniformly between the occupancy
grid origin and the maximum position, found by
adding (resolution× values.shape) to the origin.

The validity of the position is checked by the
is_free(position) function provided by the occu-
pancy grid. The position is sampled until a valid
position is found.

(3b) Implementing the adjust_pose function

The current node has a pose consisting of position
x1 and yaw θ1. The final node has position x2 and
yaw θ2.

θ2 is chosen such that a circular arc can connect the
two positions. If φ = atan2(y2 − y1, x2 − x1), then:

θ2 = φ+ (φ− θ1) = 2φ− θ1

The find_circle function provided, returns the cen-
tre xc and radius r of the circle. To check this arc
is collision free, positions x[n] are checked along the
arc, where:

x[n] =

xc + r

[
cos(θ[n]− π/2)

sin(θ[n]− π/2)

]
θ2 − θ1 > 0

xc + r

[
cos(θ[n] + π/2)

sin(θ[n] + π/2)

]
θ2 − θ1 < 0

Initialise θ[0] = θ1.
Step θ[n+ 1] = θ[n] + ∆θ
End when |θ[n]− θ1| ≥ |θ2 − θ1|

∆θ is chosen such that the distance stepped along
the arc is equal to the occupancy grid resolution,
and has the correct sign, giving:

∆θ =

{
(occupancy grid resolution)

r
θ2 − θ1 > 0

− (occupancy grid resolution)
r

θ2 − θ1 < 0

5

Figure 9: Trajectory found using RRT.

Figure 9 shows the trajectory found using the RRT
implementation using this function. It avoids colli-
sions and connects nodes with circular arcs.

(3c) Drawback of RRTs in the current imple-
mentation

The current RRT implementation is probabilistically
complete and can guarantee that a solution will be
found with enough iterations. However, it doesn’t
provide any guarantee on the optimality of the so-
lution. This can be seen in testing the current im-
plementation, which usually gives a sub-optimal so-
lution.

One solution is to adapt the implementation to give
the RRT* algorithm. Previously, when a new node
is randomly sampled, a path is connected from the
nearest collision-free node and added to the graph.
RRT* is similar, but changes how the tree is ex-
panded on sampling a new node.

Instead, the new node is steered towards the ran-
domly sampled position. Following this, other
nearby nodes are checked to find which gives the
minimum cost for the new position, and the best is
chosen as the parent instead. Finally, nearby nodes
have their parents changed to the new node if this
gives a lower cost.

(3d) Implementing RRT*

The implementation is based off of Algorithm 4,
ExtendRRT*, from “Incremental Sampling-based Al-
gorithms for Optimal Motion Planning”[2].

One difference is that when changing the parent of
the new node, and when changing the parent of
nearby nodes, only the positions are kept the same.
The yaw of nodes are adjusted to give a valid path
between positions.

The algorithm is also adjusted such that instead of
stopping when a solution is found, the tree is con-
tinually extended for the maximum number of itera-
tions. When a new solution is found, it only replaces
the old solution if the cost is lower.

Figure 10: Trajectory returned using RRT*.

Figure 10 shows the trajectory found using RRT*.
It repeatedly gave close to optimal solutions. This
is much better compared to the simpler RRT im-
plementation used previously. The drawback is the
greatly increased computation time, but this could
be improved by making use of more efficient data
structures and algorithms.

6

2.2 Exercise 4

(4a) Implementing the feedback_linearized
function and using with navigation

Figure 11: Screenshot of rviz with a trajectory
planned to a 2D nav goal using RRT.

Figure 11 shows a trajectory returned when using the
RRT implementation within ROS for navigation.

(4b) The advantages and disadvantages of mo-
tion primitives for path generation

RRT connects new nodes using motion primitives,
connecting a circular arc from the previous node to
a new node, satisfying yaw requirements. With this,
it inherently models the non-holonomic motion con-
straints of the robot, and any generated path will be
feasible.

For other sampling-based algorithms, determining
whether two nodes can be connected requires more
work.

Additionally, this allows more complex constraints
such as minimum turning radius to be taken into
account.

There are no obvious disadvantages, although other
methods may be computationally cheaper.

(4c) Implementing the get_velocity function

For the current position x, the two closest points
on the trajectory x1 and x2 are found, by stopping
searching when x is between them, which occurs if:

sign(n · (x2 − x)) 6= sign(n · (x1 − x))

where
n =

x2 − x1

|x2 − x1|

The velocity of the holonomic point P , v is set as:

v = vnomn+ kdn⊥

where n⊥ is perpendicular to n and d is the perpen-
dicular distance to x1 and x2, along n⊥:

d = n⊥ · (x1 − x) or n⊥ · (x2 − x)

vnom is the nominal speed along the path, and k is
the gain from the perpendicular distance d to the
velocity along n⊥ to correct for this.

Figure 12: Screenshot of rviz with a trajectory
planned to a 2D nav goal using RRT, where the
robot is following the trajectory using the get_ve-
locity function.

7

(4d) The purpose of roslaunch exercises
slam.launch

This starts the launch file slam.launch, which
loads parameters and starts nodes responsible
for performing SLAM. This includes loading the
robot description, doing forward kinematics with
robot_state_publisher and starting SLAM with the
slam_gmapping node in the gmapping package.

The SLAM algorithm simultaneously builds a map
from the laser scan data and localises the robot
within this map frame. Particle filter methods are
used to combine estimates of pose from odometry
and map data, to form the final pose estimate.

The RRT algorithm uses SLAM to provide the oc-
cupancy grid and estimate of the current robot pose.
Then, when planning to a navigation goal, this starts
at the current pose and avoids collisions with the
provided occupancy grid.

3 References
[1] LaValle S., (2006) Planning Algorithms. Section 5.4.3,

Randomized Potential Fields.

[2] Karaman S., Frazzoli E., (3 May 2010) Incremental
Sampling-based Algorithms for Optimal Motion Planning.
arXiv:1005.0416 [cs.RO].

8

	Potential Field Method
	Exercise 1
	Exercise 2

	Rapidly-Exploring Random Trees
	Exercise 3
	Exercise 4

	References

