Mobile Robot Systems

Assignment 1

Zach Lambert

1 Exercise 1 - Kinematic simulator

(1a) Differential drive equation of motion

Robot state x = [a: Y H}T
6.

, for position (z,y) and yaw

The control inputs are linear velocity u = 0.25 and an-
gular velocity w = cos(t), which give the equation of

motion:

ucos(f)
usin(6)

T =

(1b) Euler’s method

Euler’s method uses a first-order approximation of the
series expansion of x(t):

ox

x(t + 6t) = x(t) + ot — + O(3t?)
Ot |t a(t)
ox

which introduces a truncation error O(6t?).

(c) Effect of step-size on accuracy of simulation
with Euler’s method

Trajectories

10

051

0.0k e

dt = 1.000 [s]
dt = 0.500 [s]
dt = 0.100 [s] |4
dt = 0.010 [s]

-0.5 0.0 0.5 1.0 15 2.0

Figure 1: Simulation results with Euler’s method for
various step sizes.

Pembroke College

Feb 2021

Because the truncation error of Euler’s method is O(6t?),
accuracy improves with decreasing step size, as shown in
Figure 1} However, smaller step size increases computa-
tion time. Therefore, step size should only be selected
as small as is necessary. When the signals involved are
changing more slowly, with smaller frequency compo-
nents and smaller higher order derivatives, step sizes can
be smaller.

(1d) The Runge-Kutta method

The Runge-Kutta method (RK4) is a fourth-order nu-
merical integration method. Euler’s method is a first-
order method, so it takes into account first-order terms,
but truncates second-order and higher terms, giving a
local truncation error O(6t?). RK4 takes into account
all terms up to and including fourth-order terms, giving
a local truncation error O(dt°).

RK4 uses the following approximation:

1
.’B(t + 5t) ~ 0t X 6<k1 + 2ko + 2ks + k4)

where
ki = f(t )
ko :f(t+%,m+k1%)
k3:f(t+%,m+k2%)

ky = f(t + 0t,x + k3dt)

and f(t,z) is the derivative of = with respect to time,
evaluated for a given time ¢ and state x:

ox

,T



(1le) Comparing Euler’s method and RK4

Trajectories

0.0
— dt = 1.000 [s]
dt = 0.500 [s]
-0.5+ dt = 0.100 [s]
— dt = 0.010 [s]
-0.5 0.0 05 1.0 15 2.0

Figure 2: Simulation results with RK4 for various step
sizes.

RK4 is far more accurate than Euler’s method for the
same fixed time-step, as shown in Figure[2] A time step
of 6t = 1 with RK4 gives similar accuracy to §t = 0.01
with Euler’s method, since it takes into account the
higher derivatives.

(1f) Simulating a perception-action loop running
at 1Hz

Trajectories

12+
10}
0.8
0.6 |-
04 e 1 — dt=1.000(51H
— dt = 0.500 [s]
02 b dt = 0.100 [s] |4
dt = 0.010 [s]
— exact
00 = i ) ) O ;
0.0 0.5 1.0 15

Figure 3: Simulation results with u = cos([t]) for a 1Hz
perception-action loop, using Euler’s method.

Trajectories

12

1.0F--

e 1 b at = 1.000 511

— dt = 0.500 [s]

ozl f : dt = 0.100 [s] ||
: dt = 0.010 [s]

00l ] ) L ‘ — exact

0.0 0.5 1.0 15

Figure 4: Simulation results with u = cos(|t]) for a 1Hz
perception-action loop, using RK4.

Figure [3] and Figure [ show the simulation with a
perception-action loop running at 1 Hz. The exact so-
lution is shown for comparison. With w = cos(t), the
angular velocity varies continuously and with relatively
small state derivatives. However, with w = cos(|t]),
there is a step change in angular velocity at t =1,2,...,
which gives large derivatives at these points, introducing
errors.

This can be seen in the RK4 simulation, where the sim-
ulation results deviate at about x = 0.25 for t = 1,
where the step change in w causes the larger step sizes
to introduce errors.

(1g) Adaptive numerical integration methods

Previous methods used a fixed step size dt. Adaptive
methods vary the step size based on the precision re-
quired for a particular point in the simulation. When a
small step size isn’t needed, if velocity is zero for exam-
ple, step size can be increased to reduce simulation time.
When the velocity is changing rapidly, higher precision
is required to maintain the same accuracy, so step size
is reduced.

Adaptive methods estimate the truncation error for a
given step size 0t and iteratively update 0t until a suit-
able truncation error is achieved. This can be applied
to Euler’s method[I] and RK4[2].



Trajectories

l4pF—— = 9
12k 4
LOF-eedeens 4
0.8 8
0.6 1 1
dt = 1.000
L — dt=0.500 [1
dt = 0.100
0.2} dt = 0.010 1
— dt = variable
0.0 — exact |
0.0 0.5 1.0 15
Trajectories
1.300 8
12050 b
— dt = 1.000
— dt = 0.500
1200k o dt = 0.100 1
dt = 0.010
— dt = variable
— exact
) | | N
1.540 1.545 1.550 1.555

Figure 5: Simulation results using Euler’s method and
an adaptive step size, with an overall plot and focus on
the end states.

Figure [6] shows the performance of Euler’s method with
an adaptive step size. The variable step size is highly
accurate, reaching practically the same end state, while
being just as fast as the fixed step sizes shown.

Small step sizes were required when there were step
changes in the angular velocity, at t = 1,2,..., allow-
ing it to reach step sizes as small as 1075 to maintain
accuracy, while using larger step sizes for other parts of
the simulation to save time.

To give comparable accuracy with a fixed step size, a
fixed step size would have to be selected as the mini-
mum used by the adaptive integrator and would be much
slower.

Trajectories

l4F— - - =T T 1
121 1
10+ 1
0.8 1
0.6 b 4t 1000 1
— dt =0.500
0_4_...:......... dt = 0.100 o
dt = 0.010
02k i dt = 0.001 1
— dt = variable
0.0 — exact
0.0 0.5 1.0 15
+1.296 Trajectories
0.006 1
0.005 ‘ 1
0.004 1
: : : : : : — dt=1.000
0.003 Fovvroems i e 0 500 1
dt = 0.100
0.002 | dt = 0.010 1
: dt = 0.001
: ; — dt = variable
0.001 Frrvoooed I 4
: : — exact
0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009
+1.542
Figure 6: Simulation results using RK4 and an adap-

tive step size, with an overall plot and focus on the end
states.

Using an adaptive step size with RK4 performs even bet-
ter, with the final state coinciding with the exact final
state. It was more accurate than using a fixed step size
of 6t = 0.001, while being much quicker to simulate.

Again, the smaller step sizes were required when the an-
gular velocity underwent step changes.



2 Exercise 2 - Obstacle avoidance

(2a) Implementing a Braitenberg controller for
obstacle avoidance

The Braitenberg controller implemented sets the linear
velocity u (m/s) and angular velocity w (rad/s) as lin-
ear combinations of the inverses of the distance mea-
surements. These are labelled dp,...,ds corresponding
to the left, front left, front, front right and right sensors.

v=Wax+ vy
for .
z= [z nl v=[u o]

The controller should:

e Move at u = 0.2 m/s if there are no obstacles in
front, and slowing down to u = 0 at 0.5m from a
wall.

e Rotate away from obstacles on the left or right,
moving away more quickly from obstacles detected
by the front left and front right sensors.

This used:
v =[0.2 0]"
0 0 —-01 0 O
W= —-05 -1 0 1 05
With no obstacles in front, do = 0o, 3 = 0 so the

robot moves with v = 0.2. If dy = 0.5, zo = 2, so

v=02-2x0.1=0.

The weights for w cause the robot to rotate away from
the side with smaller distances and therefore larger in-
puts x;, with larger weights for the front right and front
left sensors.

The inverse distances were used instead of a sigmoid
function since this removed the sensitivity to hyper-
parameters (W), which only affected how close the robot
had to get to an obstacle before slowing down or turning
away from it.

Figure 7: Robot trajectory when using the Braitenberg
obstacle avoidance controller.

Figure|[7|shows a trajectory of the robot using the Brait-
enberg controller. It follows a closed loop around the en-
vironment avoiding obstacles and trying to stay equidis-
tant from obstacles on either side.

(2b) Implementing a rule-based controller for ob-
stacle avoidance

The rule-based controller uses similar concepts to the
Braitenberg controller, with with adjustments.

Firstly, w = 0.2, unless the front distance is less thatn
1m, where it starts to reduce the velocity until u = 0 at
d2 = 0.5. This allows the robot to move more quickly in
general, while stopping before hitting obstacles in front.

Secondly, only the front and left sensors are taken into
account to set angular velocity, allowing smoother mo-
tion for maintaining an equal distance between obsta-
cles. However, if the front right or front left distances
go below a threshold (in this case, 2m), then w was set
to move away from this.

Finally, when the front distance is small and w is small,
this means the robot has reached a dead end. In this
case, the controller offsets w if it is exactly equal to zero,
and scales the angular velocity by the inverse of the front
distance. This allows it to rotate out of a dead end and
start moving back the way it came.



Figure 8: Robot trajectory when using the rule-based
obstacle avoidance controller.

Figure [§| shows the trajectory when using a rule-based
controller. The trajectory is similar to the Braitenberg
controller, but is smoother.

(2c) Comparing performance of the controllers

Both controllers used similar concepts, so behaved sim-
ilarly and were robust to changes in the environment.

The only exception was dead-ends, where the Braiten-
berg controller would come to a stop, whereas the rule-
based controller would move back the way it came.

(2d) Effect of sensor noise on performance

To edit the sensor noise, the sensor noise standard devia-
tion for the laser plugin in the turtlebot3 gazebo urdf was
edited. Because the distance measurements are averaged
into five bins, this smoothed out the noise, making small
noise insignificant. Even at significant noise levels, both
controllers were relatively unaffected, since neither used
sharp decision boundaries. However, around a standard
deviation of 0.5m, the distance measurements became
unreliable, causing the controllers to fail.

3 Exercise 3 - Localisation

(3a) Gazebo setup

*$ OIS - OB %% [k O|&,

)
S
=

Figure 9: Screenshot of setup for robot simulation with
Gazebo for localisation.

(3b) Implementing Particle.___init

A particle is initialised by setting its weight to w = 1
and randomly selecting a valid start pose. Sampling
from uniform distributions:

z~U[-W+R,W — R]
y~U[-W+R,W — R|
0 ~Ul|—m,m]

where the robot has radius R, and the environment has
a size 2W x 2W centered at (0, 0).

Additionally, the position (x,y) is checked for collision
with the cylinder and resampled if there is a collision. A
collision occurs when the distance between the cylinder
and robot is less than the sum of the robot radius and
cylinder radius.

(3c) Implementing Particle.move

The pose at time-step ¢ is represented by the vector:
T = [ZE y G]T

The discrete-time state equation for the robot is:

Tpi1 = Tk + Oxp + Wi

wy, is white noise with standard deviation equal to 30%
of dx and dx is determined by the linear velocity u; and



angular velocity wy:

&Bk =t x R(Gk)vk

Vi = [uk 0 wk]T
cos(f) —sin(fx) 0O
R(0;) = |sin(fx) cos(@)k) O
0 0 1

The Particle.move function samples x4 according to
a normal distribution with mean x; + dxj; and the co-
variance of wy. A 30% standard deviation was chosen
instead of the suggested 10% as this was found to per-
form better.

To allow the particle filter to handle the robot being
kidnapped, or starting in an unknown, a probability of
kidnap € = 0.2 was used. With € probability, instead
of using sampling xx11, the new particle state was ran-
domly sampled over all valid states. A probability of
0.2 was chosen since it meant the particle filter more
quickly found the valid state. When a cluster formed
around the valid state, when particles were moved to a
random state, they would have a low weight and not be
re-sampled.

Figure 10: Screenshot of setup for visualising the robot
and particle filter point cloud using Rviz.

Figure [10| shows a screenshot of the localisation in Rviz,
with a cluster of particles formed around the robot.

(3d) Implementing Particle.compute__weight

The distance sensor readings ¥ follow a normal distribu-
tion with mean equal to the true distance, 1 and stan-
dard deviation o = 0.8. However, if the measurement is
above 3.5, this will return an infinite reading.

For a set of measurements {y;}Y, each contributes w;
to the weight:

N
w=I[w
i=1

If y # oo, weight is assigned to the probability density:

w; = p(yi) = N (i, 0:)

However, if an infinite measurement y; = oo is received,
weight is assigned to probability mass that y; > 3.5:

3.5 — u; 3.5 — u;
w; =p(y; > 3.5)=p <z > JMZ> =1-¢ <,uz>
1

a;

where ¢(z) is the cumulative density function for the
unit normal distribution.

The function uses the ray trance function to compute
the expected distance for the current state estimate.

(3e) Localisation convergence

In general, localisation always succeeds. However, due to
simple geometry of the environment, several trajectories
of the robot give the same distance measurements. For
example, if moving towards a wall in any corner region
of the box.

However, if a cluster formed about a similar trajectory,
it would break up whenever unexpected distance mea-
surements were received, whereas a cluster that formed
around the true state wouldn’t receive unexpected dis-
tance measurements and would persist.

Once one particle was randomly placed near the correct
state, it would be assigned a high weight, and particles
would quickly accumulate.

(3f) Robustness to kidnapping

Kidnapping has the same effect as initialising the robot
with unknown starting state. So long as the kidnap
probability was sufficiently high, once a particle found a
nearby state, a cluster would form around it, converging
to the corrects state.



(3g) Particle filter performance

Figure 11: Trajectory of state estimate and true esti-
mate for the particle filter.

Error [m]

o 200 400 600 800
Timestep

1000

Figure 12: State estimate error over time for the particle
filter.

Figure |11| shows the trajectory of the state estimate and
true state. At the start, the state estimate has larger er-
rors, while still searching for the correct solution. How-
ever, once converged on the correct solution, it would
reliably maintain this state, with an average error of
about 0.2m, as shown in Figure

(3h) Comparing the particle filter to an Extended
Kalman Filter

The main advantage of a Kalman filter is increased res-
olution and decreased computation time. A single state
estimate is maintained, which is updated by combining
the prior estimate based on previous measurements and
the likelihood of the new state based on new measure-
ments. This gives the optimal state estimation for a
linear system with Gaussian noise, which performs well
so long as the system model is accurate.

However, the Kalman filter relies on finding a new state
estimate from the old state estimate, so can’t handle
starting from an unknown state.

Perhaps a practical localisation method would use a
Kalman filter after converging to a solution with small
errors, while using a particle filter when it needs to do a
wider search of possible states when the current state is
unknown or inaccurate.

4 References

[1] University of British Columbia (2021)
Variable step size methods, Available at:
http://www.math.ubc.ca/~feldman/math/vble.pdf
(Accessed: 01 Feb 2021)

[2] Oklahoma State University (2021)
Runge-Kutta Method, Available at:
https://math.okstate.edu/people/yqwang/teaching/
math4513_fallll/Notes/rungekutta.pdf
(Accessed: 01 Feb 2021)


http://www.math.ubc.ca/~feldman/math/vble.pdf
https://math.okstate.edu/people/yqwang/teaching/math4513_fall11/Notes/rungekutta.pdf
https://math.okstate.edu/people/yqwang/teaching/math4513_fall11/Notes/rungekutta.pdf

	Exercise 1 - Kinematic simulator
	Exercise 2 - Obstacle avoidance
	Exercise 3 - Localisation
	References

